Cho ΔABC , D là trung điểm của AB , đường thẳng qua D và song song với BC cắt AC ở E , đường thẳng qua E và song song với AB cắt BC ở F . CMR :
1 , BD = EF
2 , ΔADE =ΔEFC
3, Gọi M là trung điểm của DF . Chứng minh B,M,E thẳng hàng
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Theo đề đúng thì lm như sau:
a) Có: DE // BF (gt)
EF // BD (gt)
Suy ra BD = EF (theo tính chất đoạn chắn) (đpcm)
b) Vì EF // AB (gt) => ADE = DEF (so le trong) (1)
ED // BC (gt) => DEF = EFC (so le trong) (2)
Từ (1) và (2) => ADE = EFC
Xét t/g ADE và t/g EFC có:
EAD = CEF ( đồng vị)
AD = EF ( cùng = BD)
ADE = EFC (cmt)
Do đó, t/g ADE = t/g EFC (g.c.g) (đpcm)
c) Xét t/g MFE và t/g MDB có:
MF = MD (gt)
MFE = MDB (so le trong)
FE = DB (câu a)
Do đó, t/g MFE = t/g MDB (c.g.c)
=> EMF = BMD (2 góc tương ứng)
Mà EMF + EMD = 180o
Nên BMD + EMD = 180o
=> BME = 180o
hay B,M,E thẳng hàng (đpcm)
a: Xét tứ giác BDEF có
BD//EF
DE//BF
Do đó: BDEF là hình bình hành
Suy ra: BD=EF
b: Xét ΔADE và ΔEFC có
\(\widehat{ADE}=\widehat{EFC}\)
AD=EF
\(\widehat{A}=\widehat{FEC}\)
Do đó: ΔADE=ΔEFC
c: Ta có: BDEF là hình bình hành
nên Hai đường chéo BE và DF cắt nhau tại trung điểm của mỗi đường
mà M là trung điểm của DF
nên M là trung điểm của BE
hay B,M,E thẳng hàng
Ta có: DE // BC (gt)
⇒∠(D1 ) =∠B (đồng vị) (1)
Do EF // AB (gt)
⇒∠(F1 ) =∠B (đồng vị) (2)
Từ (1) và (2) suy ra: ∠(D1 ) =∠F1
Xét Δ ADE và Δ EFC, ta có:
∠A =∠(E1 ) (hai góc đồng vị, EF// AB)
AD = EF ( chứng minh a)
∠(D1 ) =∠(F1 ) (chứng minh trên)
Suy ra : Δ ADE = Δ EFC(g.c.g)
Câu hỏi của Joen Jungkook - Toán lớp 7 - Học toán với OnlineMath
Xét 2 tam giác AED và tam giác FED có ED chung
Vì D là chung điểm =>DA=DB
=>EF//AB=>EF//AD
Nối Fvới D=>AE//DF
Vậy hai tam giác ADE = EDF(c.c.c)
=>AD=EF
a) EF là đường trung bình => EF = 1/2 AB
mà BD = 1/2 AB => BD = EF
b) chứng minh giống trên => DE = CF
mà AD = EF và AE = EC => tam giác ADE = tam giác EFC
c) DE = BF và DE // BF
=> BDEF là hình bình hành
=> BE cắt DF tại trung điểm mỗi đường
mà M là trung điểm DF
=> M là trung điểm BE
=> B,M,E thẳng hàng
Xét Δ DBF và Δ FDE, ta có:
∠(BDF) =∠(DFE) (so le trong vì EF // AB)
DF cạnh chung
∠(DFB) =∠(FDE) (so le trong vì DE // BC)
Suy ra: Δ DFB = Δ FDE(g.c.g) ⇒ DB = EF (hai cạnh tương ứng)
Mà AD = DB (gt)
Vậy: AD = EF
a) Gọi tia phân giác của ∠BAC cắt DE tại K
Vì AK ⊥ DE ( gt )
=> △ ADK vuông tại K và △ AEK vuông tại K
Xét tam giác vuông ADK và tam giác vuông AEK có:
AK chung
∠ A1 = ∠ A2 ( AK là tia phân giác của ∠ BAC )
=> △ ADK = △ AEK (g.c.g )
=> AD = AE ( 2 cạnh tương ứng )
=> △ ADE cân tại A
Vì BF // AC ( gt )
=> ∠ BFD = ∠AEF ( 2 góc đồng vị ) ( 1 )
Ta có ∠ D = ∠AEF ( △ ADE cân tại A ) ( 2 )
Từ (1) và (2) => ∠ BFD = ∠D
=> △ BDF cân tại B
b) Vì BF // AC ( gt )
=> ∠ MBF = ∠ ECM ( 2 góc so le trong )
Xét tam giác BMF và tam giác EMC có:
∠MBF = ∠ECM ( cmt )
MB = MC ( M là t/ đ BC )
∠ BMF = ∠ EMC ( 2 góc đối đỉnh )
=> △ BMF = △ EMC ( g.c.g )
=> MF = ME ( 2 cạnh tương ứng )
Mà M nằm giữa 2 điểm F và E
=> M là t/đ của EF.
c) Trên tia CA lấy I sao cho IE = IC
Mà CE = BD ( △ BMF = △ EMC )
=> CE = EI = BD
=> IC = EI = BD + BD = 2BD
AC - AI = IC = 2BD
AB = AD - BD
AI = AE - IC
Mà AD = AE ( △ ADE cân tại A )
Và BD = IE ( cmt )
=> AB = AI
Mà AC - AI = AB
=> AC - AB = 2BD.
Chúc bn học tốt nha ! ❤❤
ai rảnh toán thì giúp mình nha . Đây là đề của Sở GDĐT tỉnh Nam Định thi toán 7 cuối năm
1: Xét tứ giác BDEF có
BD//EF
DE//BF
Do đó: BDEFlà hình bình hành
Suy ra: BD=EF
2: Xét ΔADE và ΔEFC có
\(\widehat{ADE}=\widehat{EFC}\)
AD=FE
\(\widehat{A}=\widehat{FEC}\)
Do đó: ΔADE=ΔEFC
3: Ta có: BDEF là hình bình hành
nên Hai đường chéo BE và DF cắt nhau tại trung điểm của mỗi đường
=>B,M,E thẳng hàng