K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1: Xét tứ giác BDEF có 

BD//EF

DE//BF

Do đó: BDEFlà hình bình hành

Suy ra: BD=EF

2: Xét ΔADE và ΔEFC có 

\(\widehat{ADE}=\widehat{EFC}\)

AD=FE

\(\widehat{A}=\widehat{FEC}\)

Do đó: ΔADE=ΔEFC

3: Ta có: BDEF là hình bình hành

nên Hai đường chéo BE và DF cắt nhau tại trung điểm của mỗi đường

=>B,M,E thẳng hàng

19 tháng 12 2016

Theo đề đúng thì lm như sau:

a) Có: DE // BF (gt)

EF // BD (gt)

Suy ra BD = EF (theo tính chất đoạn chắn) (đpcm)

b) Vì EF // AB (gt) => ADE = DEF (so le trong) (1)

ED // BC (gt) => DEF = EFC (so le trong) (2)

Từ (1) và (2) => ADE = EFC

Xét t/g ADE và t/g EFC có:

EAD = CEF ( đồng vị)

AD = EF ( cùng = BD)

ADE = EFC (cmt)

Do đó, t/g ADE = t/g EFC (g.c.g) (đpcm)

c) Xét t/g MFE và t/g MDB có:

MF = MD (gt)

MFE = MDB (so le trong)

FE = DB (câu a)

Do đó, t/g MFE = t/g MDB (c.g.c)

=> EMF = BMD (2 góc tương ứng)

Mà EMF + EMD = 180o

Nên BMD + EMD = 180o

=> BME = 180o

hay B,M,E thẳng hàng (đpcm)

 

19 tháng 12 2016

Đề sai rồi Trang ơi, xem lại đi

a: Xét tứ giác BDEF có 

BD//EF

DE//BF

Do đó: BDEF là hình bình hành

Suy ra: BD=EF

b: Xét ΔADE và ΔEFC có 

\(\widehat{ADE}=\widehat{EFC}\)

AD=EF

\(\widehat{A}=\widehat{FEC}\)

Do đó: ΔADE=ΔEFC

c: Ta có: BDEF là hình bình hành

nên Hai đường chéo BE và DF cắt nhau tại trung điểm của mỗi đường

mà M là trung điểm của DF

nên M là trung điểm của BE

hay B,M,E thẳng hàng

1 tháng 8 2017

Ta có: DE // BC (gt)

⇒∠(D1 ) =∠B (đồng vị) (1)

Do EF // AB (gt)

⇒∠(F1 ) =∠B (đồng vị) (2)

Từ (1) và (2) suy ra: ∠(D1 ) =∠F1

Xét Δ ADE và Δ EFC, ta có:

∠A =∠(E1 ) (hai góc đồng vị, EF// AB)

AD = EF ( chứng minh a)

∠(D1 ) =∠(F1 ) (chứng minh trên)

Suy ra : Δ ADE = Δ EFC(g.c.g)

30 tháng 11 2019

giải hộ tớ bài ở trên

4 tháng 12 2019

Câu hỏi của Joen Jungkook - Toán lớp 7 - Học toán với OnlineMath

25 tháng 11 2016

b a c d e f

25 tháng 11 2016

Xét 2 tam giác AED và tam giác FED có ED chung

Vì D là chung điểm =>DA=DB

=>EF//AB=>EF//AD

Nối Fvới D=>AE//DF                     

Vậy hai tam giác ADE = EDF(c.c.c)

=>AD=EF

11 tháng 12 2018

a) EF là đường trung bình => EF = 1/2 AB

mà BD = 1/2 AB => BD = EF

b) chứng minh giống trên => DE = CF

mà AD = EF và AE = EC => tam giác ADE = tam giác EFC 

c) DE = BF và DE // BF

=> BDEF là hình bình hành 

=> BE cắt DF tại trung điểm mỗi đường 

mà M là trung điểm DF

=> M là trung điểm BE

=> B,M,E thẳng hàng

13 tháng 9 2018

Xét Δ DBF và Δ FDE, ta có:

∠(BDF) =∠(DFE) (so le trong vì EF // AB)

DF cạnh chung

∠(DFB) =∠(FDE) (so le trong vì DE // BC)

Suy ra: Δ DFB = Δ FDE(g.c.g) ⇒ DB = EF (hai cạnh tương ứng)

Mà AD = DB (gt)

Vậy: AD = EF

11 tháng 4 2017

A B C M D E K F I

a) Gọi tia phân giác của ∠BAC cắt DE tại K

Vì AK ⊥ DE ( gt )

=> △ ADK vuông tại K và △ AEK vuông tại K

Xét tam giác vuông ADK và tam giác vuông AEK có:

AK chung

∠ A1 = ∠ A2 ( AK là tia phân giác của ∠ BAC )

=> △ ADK = △ AEK (g.c.g )

=> AD = AE ( 2 cạnh tương ứng )

=> △ ADE cân tại A

Vì BF // AC ( gt )

=> ∠ BFD = ∠AEF ( 2 góc đồng vị ) ( 1 )

Ta có ∠ D = ∠AEF ( △ ADE cân tại A ) ( 2 )

Từ (1) và (2) => ∠ BFD = ∠D

=> △ BDF cân tại B

b) Vì BF // AC ( gt )

=> ∠ MBF = ∠ ECM ( 2 góc so le trong )

Xét tam giác BMF và tam giác EMC có:

∠MBF = ∠ECM ( cmt )

MB = MC ( M là t/ đ BC )

∠ BMF = ∠ EMC ( 2 góc đối đỉnh )

=> △ BMF = △ EMC ( g.c.g )

=> MF = ME ( 2 cạnh tương ứng )

Mà M nằm giữa 2 điểm F và E

=> M là t/đ của EF.

c) Trên tia CA lấy I sao cho IE = IC

Mà CE = BD ( △ BMF = △ EMC )

=> CE = EI = BD

=> IC = EI = BD + BD = 2BD

AC - AI = IC = 2BD

AB = AD - BD

AI = AE - IC

Mà AD = AE ( △ ADE cân tại A )

Và BD = IE ( cmt )

=> AB = AI

Mà AC - AI = AB

=> AC - AB = 2BD.

Chúc bn học tốt nha ! ❤❤

6 tháng 5 2016

 ai rảnh toán thì giúp mình nha . Đây là đề của Sở GDĐT tỉnh Nam Định thi toán 7 cuối năm