cho tam giác ABC goc BAC >hoặc = 60 độ cmr AB+AC<hoặc =2BC
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Kẻ BH ⊥ AC tại H.Xét tam giác ABH có góc BHA = 90độ (cách kẻ)=> góc ABH + góc BAH = 90độ (phụ nhau) => góc ABH = 90độ - góc BAH = 90độ - 60độ = 30độ => góc ABH = 30độXét tam giác ABH có góc BHA = 90độ và góc ABH = 30độ=> Theo bổ đề trên ta có: AH = AB/2 => 2AH = AB (1)Áp dụng định lý Py-ta-go ta có:AB² = BH² + AH²=> BH² = AB² - AH² (2)Xét tam giác BHC có góc BHC = 90độ (cách kẻ)=> Áp dụng định lý Py-ta-go ta có:BC² = BH² + HC² = BH² + (AC - AH)² = BH² + AC² - 2AH.AC + AH² (3)Thay (1) và (2) vào (3) ta có:BC² = (AB² - AH²) + AC² - AB.AC + AH²<=> BC² = AB² - AH² + AC² - AB.AC + AH<=> BC² = AB² + AC² - AB.AC (đpcm)
Gọi giao điểm của AC với DB là H.
Xét tam giác AEB có:\(\hept{\begin{cases}\widehat{EAB}=\frac{60^0}{2}=30^0\\\widehat{EBA}=180^0-60^0-90^0=30^0\end{cases}\Rightarrow}\widehat{EAB}=\widehat{EBA}\Rightarrow\Delta AEB\) cân tại E.
Do EK là đường cao nên đồng thời là đường trung tuyến suy ra AK=BK.
Ta có:\(\widehat{CEA}=180^0-\widehat{ACE}-\widehat{CAE}=180^0-90^0-30^0=60^0\)
Xét tam giác AEC và tam giác AEK có:AE là cạnh chung,^CAE=^KAE(có AE là phân giác) \(\Rightarrow\Delta AEC=\Delta AEK\left(ch-gn\right)\Rightarrow\widehat{CEA}=\widehat{KEA}=60^0\)
\(\Rightarrow\widehat{CEH}=180^0-\widehat{CEA}-\widehat{KEA}=180^0-60^0-60^0=60^0\Rightarrow\widehat{AEH}=120^0\)
Mặt khác:\(\widehat{AEB}=180^0-\widehat{CEA}=180^0-60^0=120^0\)
\(\Rightarrow\widehat{AEB}=\widehat{AEH}\)
Khi đó:\(\Delta EAH=\Delta EAB\left(g-c-g\right)\Rightarrow HA=HB\)
Mà \(\widehat{CAB}=60^0\Rightarrow\Delta AHB\) đều.
Lại có HK là đường trung tuyến(do KA=KB) nên HK là đường cao hay \(HK\perp AB\).Mà \(EK\perp AB\) nên H,E,K thẳng hàng hay AC,BD,EK cùng đi qua một điểm.