Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
C A K B E D
Cm: a) Xét t/giác ACE và t/giác AKE
có: \(\widehat{ACE}=\widehat{AKE}=90^0\) (gt)
AE : chung
\(\widehat{CAE}=\widehat{KAE}\) (gt)
=> t/giác ACE = t/giác AKE (ch - gn)
=> AC = AK ; EC = EK (các cặp cạnh t/ứng)
Ta có: +) AC = AK (cmt) => A thuộc đường trung trực của CK
+) EC = EK (cmt) => E thuộc đường trung trực của CK
Mà A \(\ne\)E => AE là đường trung trực của CK
=> AE \(\perp\)CK
b) Xét t/giác ABC có góc C = 900
=> \(\widehat{A}+\widehat{ABC}=90^0\)
=> \(\widehat{ABC}=90^0-\widehat{A}=90^0-60^0=30^0\)
Ta có: \(\widehat{CAE}=\widehat{EAB}=\frac{\widehat{A}}{2}=\frac{60^0}{2}=30^0\)
=> \(\widehat{EAB}=\widehat{ABE}=30^0\) => t/giác ABE cân tại E
=> AE = EB
=> AK = KB (quan hệ giữa đường xiên và hình chiếu)
(có thể xét qua 2 t/giác AEK và t/giác BEK)
c) Xét t/giác EKB có góc EKB = 90 độ
=> EB > KB (ch > cgv)
Mà KB = AK (Cmt); AK = AC (vì t/giác ACE = t/giác AKE)
=> EB > AC
d) Ta có: AC \(\perp\)BC \(\equiv\)C
KE\(\perp\)AB \(\equiv\)K
BD \(\perp\)AD \(\equiv\)D
=> AC, BD. KE đi qua 1 điểm (t/c 3 đường cao)
A B C E K D 1 2 1
a) Ta có : \(\widehat{BAC}=60^0\Rightarrow\widehat{A_1}=\widehat{A_2}=\widehat{B_1}=30^0.\)
\(\Delta ACE=\Delta AKE\left(CH-GN\right)\Rightarrow AC=AK\)=> \(\Delta ACK\)cân tại A => AE vừa là phân giác, vừa là trung tuyến => \(AE\perp CK\).
b) Từ câu a) => \(\Delta AEB\)cân tại E => AE = EB ; EK vừa là đường cao, vừa là trung tuyến => KA = KB.
c) Ta có AK \(\perp\)EK, theo quan hệ giũa đường vuông góc và đường xiên, ta có : AE > AK <=> AE > AC (vì AK = AC) <=> EB > AC (vì EB = AE).
d) Xét \(\Delta AEB\)có : \(BD\perp AE,AC\perp BE,EK\perp AB\)=> BD, AC, EK là ba đường cao của tam giác AEB => chúng đồng quy (theo tính chất ba đường cao trong tam giác).
Em tham khảo tại đây nhé.
Câu hỏi của Marklin_9301 - Toán lớp 8 - Học toán với OnlineMath
Em tham khảo tại đây nhé.
Câu hỏi của Marklin_9301 - Toán lớp 8 - Học toán với OnlineMath
a) xét tam giác EKB vuông tại K (EK\(x = {-b \pm \sqrt{b^2-4ac} \over 2a}\)\(\perp\)\(\perp\perp\) vuông góc với AB) có
EK là cạnh góc vuông
EB là cạnh huyền
Vì trong \(\Delta\)tam giác vuông, cạnh huyền là cạnh lớn nhất.
suy ra: DC > DE
mà EK = CE (tam giác ACE = tam giác AKE)
suy ra: CE < EB
Tớ vẽ cái hình để tiện nghĩ:v
A B C E K D H
Gọi giao điểm của AC với DB là H.
Xét tam giác AEB có:\(\hept{\begin{cases}\widehat{EAB}=\frac{60^0}{2}=30^0\\\widehat{EBA}=180^0-60^0-90^0=30^0\end{cases}\Rightarrow}\widehat{EAB}=\widehat{EBA}\Rightarrow\Delta AEB\) cân tại E.
Do EK là đường cao nên đồng thời là đường trung tuyến suy ra AK=BK.
Ta có:\(\widehat{CEA}=180^0-\widehat{ACE}-\widehat{CAE}=180^0-90^0-30^0=60^0\)
Xét tam giác AEC và tam giác AEK có:AE là cạnh chung,^CAE=^KAE(có AE là phân giác) \(\Rightarrow\Delta AEC=\Delta AEK\left(ch-gn\right)\Rightarrow\widehat{CEA}=\widehat{KEA}=60^0\)
\(\Rightarrow\widehat{CEH}=180^0-\widehat{CEA}-\widehat{KEA}=180^0-60^0-60^0=60^0\Rightarrow\widehat{AEH}=120^0\)
Mặt khác:\(\widehat{AEB}=180^0-\widehat{CEA}=180^0-60^0=120^0\)
\(\Rightarrow\widehat{AEB}=\widehat{AEH}\)
Khi đó:\(\Delta EAH=\Delta EAB\left(g-c-g\right)\Rightarrow HA=HB\)
Mà \(\widehat{CAB}=60^0\Rightarrow\Delta AHB\) đều.
Lại có HK là đường trung tuyến(do KA=KB) nên HK là đường cao hay \(HK\perp AB\).Mà \(EK\perp AB\) nên H,E,K thẳng hàng hay AC,BD,EK cùng đi qua một điểm.