K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 9 2021

\(\sqrt{98}-\sqrt{72}+0,5\sqrt{8}=7\sqrt{2}-6\sqrt{2}+0,5.2\sqrt{2}=\sqrt{2}+\sqrt{2}=2\sqrt{2}\)

3 tháng 9 2021

d, \(\sqrt{16b}+2\sqrt{40b}-3\sqrt{90b}\)

\(=4\sqrt{b}+4\sqrt{10b}-9\sqrt{10b}\)

\(=4\sqrt{b}+-5\sqrt{10b}\)

23 tháng 10 2021

\(b,N=\left(2x-1\right)^2-4\ge-4\\ N_{min}=-4\Leftrightarrow x=\dfrac{1}{2}\\ c,P=\left(2x-5\right)^2+6\left(2x-5\right)+9-4\\ P=\left(2x-5+3\right)^2-4=\left(2x-2\right)^2-4\ge-4\\ P_{min}=-4\Leftrightarrow x=1\\ d,Q=\left(x^2-2x+1\right)+\left(y^2+4y+4\right)+1\\ Q=\left(x-1\right)^2+\left(y+2\right)^2+1\ge1\\ Q_{min}=1\Leftrightarrow\left\{{}\begin{matrix}x=1\\y=-2\end{matrix}\right.\)

AH
Akai Haruma
Giáo viên
23 tháng 10 2021

6a.

$M=x^2-x+1=(x^2-x+\frac{1}{4})+\frac{3}{4}$

$=(x-\frac{1}{2})^2+\frac{3}{4}\geq \frac{3}{4}$

Vậy $M_{\min}=\frac{3}{4}$ khi $x-\frac{1}{2}=0\Leftrightarrow x=\frac{1}{2}$

NV
10 tháng 4 2021

d. \(\dfrac{\pi}{2}< a;b< \pi\Rightarrow sina>0;sinb>0\)

\(sina=\sqrt{1-cos^2a}=\dfrac{4}{5}\Rightarrow tana=\dfrac{sina}{cosa}=-\dfrac{4}{3}\)

\(sinb=\sqrt{1-cos^2b}=\dfrac{5}{13}\Rightarrow tanb=-\dfrac{5}{12}\)

Vậy:

\(sin\left(a-b\right)=sina.cosb-cosa.sinb=\dfrac{4}{5}.\left(-\dfrac{12}{13}\right)-\left(-\dfrac{3}{5}\right)\left(\dfrac{5}{13}\right)=...\)

\(cos\left(a-b\right)=cosa.cosb-sina.sinb=...\) (bạn tự thay số bấm máy)

\(tan\left(a+b\right)=\dfrac{tana+tanb}{1-tana.tanb}=...\)

\(cot\left(a+b\right)=\dfrac{1}{tan\left(a+b\right)}=\dfrac{1-tana.tanb}{tana+tanb}=...\)

e.

\(0< y< \dfrac{\pi}{2}\Rightarrow cosy>0\Rightarrow cosy=\sqrt{1-sin^2y}=\dfrac{4}{5}\)

\(\Rightarrow tany=\dfrac{siny}{cosy}=\dfrac{3}{4}\)

Vậy: \(tan\left(x+y\right)=\dfrac{tanx+tany}{1-tanx.tany}=...\)

\(cot\left(x-y\right)=\dfrac{1}{tan\left(x-y\right)}=\dfrac{1+tanx.tany}{tanx-tany}=...\)

d: Xét ΔABC có

BK,CH là đường cao

BK cắt CH tại I

=>I là trực tâm

=>AI vuông góc BC

mà HF vuông góc BC

nên AI//HF
e: Xét ΔABC cân tại A có góc BAC=60 độ

nên ΔABC đều

Xét ΔABC đều có I là trực tâm

nên I là tâm đường tròn ngoại tiếp ΔABC

=>IA=IB=IC

d: n(omega)=4*4=16

D={(2;1); (2;3); (2;4)}

=>n(D)=3

=>P(D)=3/16

NV
21 tháng 4 2023

Có 6 kết quả thuận lợi là 21; 23; 24; 12; 32; 42 nên xác suất là \(\dfrac{6}{16}=\dfrac{3}{8}\)

18 tháng 9 2023

a) \(A=\dfrac{\sqrt[]{x}+2}{\sqrt[]{x}-5}\) có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt[]{x}-5\ne0\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\\sqrt[]{x}\ne5\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne25\end{matrix}\right.\)

Khi \(x=16\Rightarrow A=\dfrac{\sqrt[]{16}+2}{\sqrt[]{16}-5}=\dfrac{4+2}{4-5}=-6\)

b) \(B=\dfrac{3}{\sqrt[]{x}+5}+\dfrac{20-2\sqrt[]{x}}{x-25}\)

B có nghĩa \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x-25\ne0\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\ge0\\x\ne25\end{matrix}\right.\)

\(\Leftrightarrow B=\dfrac{3\left(\sqrt[]{x}-5\right)+20-2\sqrt[]{x}}{\left(\sqrt[]{x}+5\right)\left(\sqrt[]{x}-5\right)}\)

\(\Leftrightarrow B=\dfrac{3\sqrt[]{x}-15+20-2\sqrt[]{x}}{\left(\sqrt[]{x}+5\right)\left(\sqrt[]{x}-5\right)}\)

\(\Leftrightarrow B=\dfrac{\sqrt[]{x}+5}{\left(\sqrt[]{x}+5\right)\left(\sqrt[]{x}-5\right)}\)

\(\Leftrightarrow B=\dfrac{1}{\sqrt[]{x}-5}\left(dpcm\right)\)

c) \(A=\dfrac{\sqrt[]{x}+2}{\sqrt[]{x}-5}\in Z\left(x\in Z\right)\)

\(\Leftrightarrow\sqrt[]{x}+2⋮\sqrt[]{x}-5\)

\(\Leftrightarrow\sqrt[]{x}+2-\left(\sqrt[]{x}-5\right)⋮\sqrt[]{x}-5\)

\(\Leftrightarrow\sqrt[]{x}+2-\sqrt[]{x}+5⋮\sqrt[]{x}-5\)

\(\Leftrightarrow7⋮\sqrt[]{x}-5\)

\(\Leftrightarrow\sqrt[]{x}-5\in U\left(7\right)=\left\{-1;1;-7;7\right\}\)

\(\Leftrightarrow x\in\left\{16;36;144\right\}\)

d) \(A>B\left(2\sqrt[]{x}+5\right)\)

\(\Leftrightarrow\dfrac{\sqrt[]{x}+2}{\sqrt[]{x}-5}>\dfrac{1}{\sqrt[]{x}-5}\left(2\sqrt[]{x}+5\right)\)

\(\Leftrightarrow\sqrt[]{x}+2>2\sqrt[]{x}+5\)

\(\Leftrightarrow\sqrt[]{x}< -3\)

mà \(\sqrt[]{x}\ge0\)

\(\Leftrightarrow x\in\varnothing\)

2 tháng 8 2021

d) Gọi x,y lần lượt là số mol Al, Fe

\(\left\{{}\begin{matrix}27x+56y=8,3\\1,5x+y=0,25\end{matrix}\right.\)

=> x=0,1 ; y=0,1

Kết tủa : Al(OH)3, Fe(OH)2 

Bảo toàn nguyên tố Al: \(n_{Al\left(OH\right)_3}=n_{Al}=0,1\left(mol\right)\)

Bảo toàn nguyên tố Fe: \(n_{Fe\left(OH\right)_2}=n_{Fe}=0,1\left(mol\right)\)

=> \(m=0,1.78+0,1.90=16,8\left(g\right)\)

Nung kết tủa thu được chất rắn : Al2O3 và FeO

Bảo toàn nguyên tố Al: \(n_{Al_2O_3}.2=n_{Al}\Rightarrow n_{Al_2O_3}=0,05\left(mol\right)\)

Bảo toàn nguyên tố Fe: \(n_{FeO}=n_{Fe}=0,1\left(mol\right)\)

=> \(a=0,05.102+0,1.72=12,3\left(g\right)\)