K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 12 2017

Ta chứng minh: \(\sqrt{a+bc}\ge a+\sqrt{bc}\)

Thật vậy, ta có:

\(a+bc\ge a^2+2a\sqrt{bc}+bc\)

\(\Leftrightarrow a\ge a^2+2a\sqrt{bc}\)

\(\Leftrightarrow1\ge a+2\sqrt{bc}\)

\(\Leftrightarrow a+b+c\ge a+2\sqrt{bc}\)

\(\Leftrightarrow b+c\ge2\sqrt{bc}\)(Đúng theo Cauchy)

Tương tự: \(\sqrt{b+ca}\ge b+\sqrt{ca}\)

\(\sqrt{c+ab}\ge c+\sqrt{ab}\)

Cộng vế theo vế các BĐT vừa chứng minh ta được đpcm.

Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)

NV
18 tháng 2 2020

Trong câu hỏi tương tự có người làm rồi đó bạn:

https://hoc24.vn/hoi-dap/question/513461.html

20 tháng 9 2019

Èo, căng thế:

BĐT \(\Leftrightarrow\Sigma\sqrt{\left(a+b\right)\left(a+c\right)}\ge\Sigma a+\Sigma\sqrt{ab}\)(chú ý cái giả thiết a + b  + c = 1)

Thật vậy áp dụng BĐT Bunyakovski: \(\sqrt{\left(a+b\right)\left(a+c\right)}=\sqrt{\left[\left(\sqrt{a}\right)^2+\left(\sqrt{b}\right)^2\right]\left[\left(\sqrt{a}\right)^2+\left(\sqrt{c}\right)^2\right]}\)

\(\ge\sqrt{\left(\sqrt{a^2}+\sqrt{bc}\right)^2}=a+\sqrt{bc}\). Tương tự hai BĐT còn lại và cộng theo vế có ngay đpcm.

Đẳng thức xảy ra khi a = b = c = 1/3

NV
3 tháng 8 2021

\(\dfrac{\sqrt{ab+2c^2}}{\sqrt{1+ab-c^2}}=\dfrac{\sqrt{ab+2c^2}}{\sqrt{a^2+b^2+ab}}=\dfrac{ab+2c^2}{\sqrt{\left(a^2+b^2+ab\right)\left(ab+2c^2\right)}}\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+2ab+2c^2}\)

\(\ge\dfrac{2\left(ab+2c^2\right)}{a^2+b^2+a^2+b^2+2c^2}=\dfrac{ab+2c^2}{a^2+b^2+c^2}=ab+2c^2\)

Tương tự và cộng lại:

\(VT\ge ab+bc+ca+2\left(a^2+b^2+c^2\right)=2+ab+bc+ca\)

28 tháng 3 2021

Áp dụng BĐT BSC:

\(\dfrac{a^2}{a+b}+\dfrac{b^2}{b+c}+\dfrac{c^2}{c+a}\ge\dfrac{\left(a+b+c\right)^2}{2\left(a+b+c\right)}\)

\(=\dfrac{a+b+c}{2}\)

\(\ge\dfrac{\sqrt{ab}+\sqrt{bc}+\sqrt{ca}}{2}=\dfrac{1}{2}\)

Đẳng thức xảy ra khi \(a=b=c=\dfrac{1}{3}\)

21 tháng 6 2017

Ta chứng minh 

\(\sqrt{a+bc}\ge1a+\sqrt{bc}\)

\(\Leftrightarrow a\ge a^2+2a\sqrt{bc}\)

\(\Leftrightarrow a\left(1-a-2\sqrt{bc}\right)\ge0\)

\(\Leftrightarrow a\left(b+c-2\sqrt{bc}\right)\ge0\)

\(\Leftrightarrow a\left(\sqrt{b}-\sqrt{c}\right)^2\ge0\)(đúng)

Từ đây ta suy ra được

\(\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}=1+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

21 tháng 6 2017

Một cách chứng minh rất sáng tạo ko lệ thuộc vào cách truyền thống. Cho bn 1 k

27 tháng 12 2020

c=c.1 thay 1 bằng a+b+c xong cô si

 

21 tháng 6 2017

Áp dụng BĐT Bunhiakovsky:

\(\sqrt{a+bc}=\sqrt{a\left(a+b+c\right)+bc}=\sqrt{\left(a+b\right)\left(a+c\right)}\)

\(\ge\sqrt{\left(\sqrt{a}.\sqrt{a}+\sqrt{b}.\sqrt{c}\right)^2}=a+\sqrt{bc}\)   (1)

Tương tự:  \(\sqrt{b+ca}\ge b+\sqrt{ca}\)   (2)

và:   \(\sqrt{c+ab}\ge c+\sqrt{ab}\)   (3)

Cộng (1), (2) và (3), kết hợp với a+b+c=1 ta có đpcm.

Đẳng thức xảy ra   \(\Leftrightarrow\)  ...   \(\Leftrightarrow\)   \(a=b=c=\frac{1}{3}\)

NV
13 tháng 5 2020

\(\sqrt{a+bc}=\sqrt{a\left(a+b+c\right)+bc}=\sqrt{\left(a+b\right)\left(a+c\right)}\ge\sqrt{\left(a+\sqrt{bc}\right)^2}=a+\sqrt{bc}\)

Tương tự: \(\sqrt{b+ac}\ge b+\sqrt{ac}\) ; \(\sqrt{c+ab}\ge c+\sqrt{ab}\)

\(\Rightarrow VT\ge a+b+c+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}-\sqrt{ab}-\sqrt{bc}-\sqrt{ca}\)

\(\Rightarrow VT\ge a+b+c=1\)

Dấu "=" xảy ra khi \(a=b=c=\frac{1}{3}\)

6 tháng 12 2015

\(\sqrt{a+bc}=\sqrt{a\left(a+b+c\right)+bc}=\sqrt{a^2+a\left(b+c\right)+bc}\ge\sqrt{a^2+2a\sqrt{bc}+bc}=a+\sqrt{bc}\)

Tương tự: \(\sqrt{b+ac}\ge b+\sqrt{ca};\sqrt{c+ab}\ge c+\sqrt{ab}\)

\(\Rightarrow\sqrt{a+bc}+\sqrt{b+ca}+\sqrt{c+ab}\ge1+\sqrt{ab}+\sqrt{bc}+\sqrt{ca}\)

Xảy ra đẳng thức khi và chỉ khi \(a=b=c=\frac{1}{3}\)