Tìm dư trong phép chia \(\left(x^{105}+x^{90}+x^{75}+...+x^{15}+1\right)⋮\left(x^2-1\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Vì đa thức chia có dạng bậc 2 ⇒đa thức dư sẽ là ax+bax+b
Gọi Q(x) là thương trong phép chia (x^105+x^90+x^75+...+x^15+1):(x^2−1) ta có:
x^105+x^90+x^75+...+x^15+1=(x^2−1)Q(x)+ax+bx
Tại x=1 có: 8=a+b (1)
Tại x=−1 có: −a+b=0(2)
Trừ (1) cho (2) được:
a+b+a−b=8
⇒2a=8
⇒a=4
Khi đó: b = 4
Vậy dư của phép chia là 4x+4.
mk viet nham de mk lam lai nha:
Vì đa thức chia có dạng bậc 2 ⇒đa thứ dư sẽ là: ax+b
Gọi Q(x) là thương trong phép chia:(x^105+x^90+x^15+1)/(x^2-1) ta có:
Tại x=1x=1 có: 8=a+b(1)
Tại x=−1x=−1 có: −a+b=0(2)
Trừ (1) cho (2) được:
a+b+a−b=8
⇒2a=8
⇒a=4
Khi đó: b = 4
Vậy dư của phép chia là 4x+4 .
@_@
Phạm Minh Đức đúng ròi đó :)
f(x) = ( x1999 + x999 + x99 + x9 + 2004 ) : ( x2 - 1 )
f(x) = ( x1999 + x999 + x99 + x9 + 2004 ) : ( x - 1 ) ( x + 1 )
Áp dụng định lý Bezout ta có 2 đa thức dư :
+) f(1) = 11999 + 1999 + 199 + 19 + 2004 = 2008
+) f(-1) = (-1)1999 + (-1)999 + (-1)99 + (-1)9 + 2004 = 2000
Vậy phép chia trên có 2 đa thức dư là f(1) = 2008 và f(-1) = 2000
Vì đa thức chia có bậc 2 nên bậc của đa thức dư không vượt quá 1 .
Ta có :
\(\left(x^{54}+x^{45}+...+x^9+1\right)\)
\(=\left(x^2-1\right).Q+\left(ax+b\right)\)
Lần lượt ta có giá trị riêng là :
\(x=1;x=-1\)
\(\Rightarrow\hept{\begin{cases}7=a+b\\1=-a+b\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}a=3\\b=4\end{cases}}\)
Vậy đa thức dư cần tìm là : \(3x+4\)
Do bậc của số chia là 2 nên số dư sẽ có dạng \(ax+b\)
Đặt \(x^{54}+x^{45}+...+x^9+1=\left(x^2-1\right).G\left(x\right)+ax+b\) với \(G\left(x\right)\) là đa thức thương
Thay \(x=1\) vào đẳng thức trên ta được : \(1+1+1...+1+1=a+b\Leftrightarrow a+b=7\) (1)
Thay \(x=-1\) vào đẳng thức trên ta được :\(1-1+1-1+...-1+1=-a+b\Leftrightarrow-a+b=1\)(2)
Cộng \(\left(1\right);\left(2\right)\) ta được \(2b=8\Rightarrow b=4\Rightarrow a=7-b=7-4=3\)
Vậy số dư của phép chia trên là \(3x+4\)
đa thức chia có bậc 2 nên đa thức dư có bậc không quá 1. vậy đa thức dư có bậc nhất dạng ax+b
Ta có: \(x^{67}+x^{47}+x^{27}+x^7+x+1=\left(x^2-1\right).Q\left(x\right)+ax+b\)
Cho x=1 rồi x=-1 ta được: \(\hept{\begin{cases}1+1+1+1+1+1=a+b\\-1-1-1-1-1+1=-a+b\end{cases}}\)
\(\Leftrightarrow\hept{\begin{cases}a+b=6\\-a+b=-4\end{cases}\Leftrightarrow\hept{\begin{cases}a=5\\b=1\end{cases}}}\)
Vậy dư trong phép chia trên là 5x+1