Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Gọi $ax+b$ là dư của $F(x)$ khi chia cho $(x+2)(x-5)$
Ta có:
$F(x)=2x(x+2)(x-5)+ax+b(*)$
Theo đề thì $F(-2)=8; F(5)=26$
Thay $x=-2$ vào $(*)$ thì:
$F(-2)=(-2)a+b=8(1)$
$F(5)=5a+b=26(2)$
Từ $(1); (2)\Rightarrow a=\frac{18}{7}; b=\frac{92}{7}$
Khi đó:
$F(x)=2x(x+2)(x-5)+\frac{18}{7}x+\frac{92}{7}$
$=2x^3-6x^2-\frac{122x}{7}+\frac{92}{7}$
a)
\(\begin{array}{l}(3x - 1) + \left[ {(2{x^2} + 5x) + (4 - 3x)} \right] = 3x - 1 + 2{x^2} + 5x + 4 - 3x\\ = 2{x^2}+( 3x +5x- 3x )+ (4 - 1) = 2{x^2} + 5x + 3\end{array}\)
b) Vì A + B = C nên B = C – A
Ta được: B = \(5 - 3{x^2} - 4x - 2\)
\( = - 3{x^2} - 4x + 3\)
\(=5\cdot\left(\dfrac{2}{5}-\dfrac{13}{12}\right):\left[-8\cdot\dfrac{11}{8}\right]\)
\(=5\cdot\dfrac{-41}{60}\cdot\dfrac{-1}{11}=\dfrac{205}{60\cdot11}=\dfrac{41}{132}\)
\(=\dfrac{5x^6-3x^3+x^2}{9x^4}=\dfrac{5}{9}x^2-\dfrac{1}{3x}+\dfrac{1}{9x^2}\)
Để thực hiện phép chia một đa thức cho một đa thức khác, ta làm như sau:
Bước 1:
- Chia đơn thức bậc cao nhất của đa thức bị chia cho đơn thức bậc cao nhất của đa thức chia.
- Nhân kết quả trên với đa thức chia và đặt tích dưới đa thức bị chia sao cho hai đơn thức có cùng số mũ của biến ở cùng cột.
- Lấy đa thức bị chia trừ đi tích đặt dưới để được đa thức mới.
Bước 2: Tiếp tục quá trình trên cho đến khi nhận được đa thức không hoặc đa thức có bậc nhỏ hơn bậc của đa thức chia.
Bài 2:
a: \(=2x^4-x^3-10x^2-2x^3+x^2+10x=2x^3-3x^3-9x^2+10x\)
b: \(=\left(x^2-15x\right)\left(x^2-7x+3\right)\)
\(=x^4-7x^3+3x^2-15x^3+105x^2-45x\)
\(=x^4-22x^3+108x^2-45x\)
c: \(=12x^5-18x^4+30x^3-24x^2\)
d: \(=-3x^6+2.4x^5-1.2x^4+1.8x^2\)