0,1\(\sqrt{200}\)+ 2\(\sqrt{0,08}\)+0,4\(\sqrt{5}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{2}\sqrt{20}+\sqrt{5}\)
\(=\sqrt{5}+\dfrac{1}{2}.2\sqrt{5}+\sqrt{5}\)
\(=3\sqrt{5}\)
b, \(\sqrt{\dfrac{1}{2}}+\sqrt{4,5}+\sqrt{12,5}\)
\(=\sqrt{0,5}+3\sqrt{0,5}+5\sqrt{0,5}=9\sqrt{0,5}\)
c, \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
\(=2\sqrt{5}-3\sqrt{5}+3\sqrt{18}+2\sqrt{18}\)
\(=-\sqrt{5}+5\sqrt{18}\)
d, \(0,1.\sqrt{200}+2\sqrt{0,08}+0,4\sqrt{50}\)
\(=\sqrt{0,01.200}+0,2.\sqrt{2}+0,4.5\sqrt{2}\)
\(=\sqrt{2}+0,2\sqrt{2}+2\sqrt{2}=3,2\sqrt{2}\)
Chúc bạn học tốt!!!
TRẢ LỜI :
\(=\sqrt{5}+\sqrt{5}+\sqrt{5}=3\sqrt{5}\)
c) √20 - √45 + 3√18 + √72
= √4.5 - √9.5 + 3√9.2 + √36.2
= 2√5 - 3√5 + 9√2 + 6√2
= -√5 + 15√2
câu g
(câu cuối) đề nhiều trôi hết nhìn thấy mỗi câu (g)
\(G=0,1\sqrt{200}+2\sqrt{0,08}+0,4\sqrt{50}\)
\(G=0,1.10\sqrt{2}+\dfrac{2.2}{10}\sqrt{2}+0,4.5\sqrt{2}\)
\(G=\sqrt{2}\left(1+\dfrac{2}{5}+2\right)=\dfrac{\sqrt{2}\left(5+2+10\right)}{5}=\dfrac{17\sqrt{2}}{5}\)
a, \(\sqrt{\left(0,1\right)^2}=\left|0,1\right|=0,1\)do \(0,1>0\)
b, \(\sqrt{\left(-0,3\right)^2}=\sqrt{\left(0,3\right)^2}=\left|0,3\right|=0,3\)do \(0,3>0\)
c, \(-\sqrt{\left(-1,3\right)^2}=-\sqrt{\left(1,3\right)^2}=-\left|1,3\right|=-1,3\)do \(1,3>0\)
d, \(-0,4\sqrt{\left(-0,4\right)^2}=-0,4\sqrt{\left(0,4\right)^2}=-0,4.\left|0,4\right|=-0,4.0,4=-0,14\)
do \(0,4>0\)
\(\sqrt{\left(0,1\right)^2}=\left|0,1\right|=0,1\)
\(\sqrt{\left(-0,3\right)^2}=\left|-0,3\right|=0,3\)
\(-\sqrt{\left(-1,3\right)^2}=-\left|-1,3\right|=-1,3\)
\(-0,4\sqrt{\left(-0,4\right)^2}=-0,4\cdot\left|-0,4\right|=-0,16\)
\(-\sqrt{0,1}\cdot\sqrt{0,4}=-\sqrt{0,1\cdot0,4}=-\sqrt{0,04}=-0,2\)
b: Ta có: \(\sqrt[3]{-0.008}-\dfrac{1}{5}\cdot\sqrt[3]{64}+5\cdot\sqrt[3]{\left(-5\right)^3}\)
\(=-\dfrac{1}{5}-\dfrac{1}{5}\cdot4+5\cdot\left(-5\right)\)
\(=-\dfrac{1}{5}-\dfrac{4}{5}-25\)
=-26
\(a.\left(\sqrt{28}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}=\left(2\sqrt{7}-2\sqrt{14}+\sqrt{7}\right)\sqrt{7}+7\sqrt{8}=3.7-2.\sqrt{7.2.7}+14\sqrt{2}=21\) \(b.\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):10=\left(75\sqrt{2}+50\sqrt{2}-45\sqrt{2}\right).\dfrac{1}{10}=80\sqrt{2}.\dfrac{1}{10}=8\sqrt{2}\) \(c.\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}-3\sqrt{0,4}\right)=\left(\sqrt{10}-\sqrt{2}\right)\left(\sqrt{2}-3\sqrt{\dfrac{2}{5}}\right)=\left(\sqrt{5}-1\right)\left(2-6\sqrt{\dfrac{1}{5}}\right)\)
@.@ Trời ơi, nhiều thế ^^
a) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}-3\sqrt{0,4}\right)=\left(2\sqrt{2}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}-\frac{3\sqrt{2}}{\sqrt{5}}\right)\)
\(=\left(\sqrt{2}.\sqrt{5}-\sqrt{2}\right)\left(\sqrt{2}-\frac{3\sqrt{2}}{\sqrt{5}}\right)=2\sqrt{5}-2-6+\frac{6}{\sqrt{5}}=\frac{16\sqrt{5}}{5}-8\)
b) \(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}=\frac{75\sqrt{2}+50\sqrt{2}-45\sqrt{2}}{\sqrt{10}}=\frac{80\sqrt{2}}{\sqrt{10}}=\frac{80}{\sqrt{5}}=16\sqrt{5}\)c) \(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}=\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(2-\sqrt{2}\right)^3}\)
\(=2+\sqrt{2}+2-\sqrt{2}=4\)
d) \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)}^2\)
\(=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)
e) \(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)
f)\(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\sqrt[3]{\left(\sqrt{2}-1\right)^3}=1+\sqrt{2}-\sqrt{2}+1=2\)g) \(\sqrt[3]{26+15\sqrt{3}}-\sqrt[3]{26-15\sqrt{3}}=\sqrt[3]{\left(2+\sqrt{3}\right)^3}-\sqrt[3]{\left(2-\sqrt{3}\right)^3}\)
\(=2+\sqrt{3}-2+\sqrt{3}=2\sqrt{3}\)
\(0,1\sqrt{200}+2\sqrt{0,08}+0,4\sqrt{5}\)
\(=\frac{2\sqrt{5}+7\sqrt{2}}{5}\)