Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(5\sqrt{\dfrac{1}{5}}+\dfrac{1}{2}\sqrt{20}+\sqrt{5}\)
\(=\sqrt{5}+\dfrac{1}{2}.2\sqrt{5}+\sqrt{5}\)
\(=3\sqrt{5}\)
b, \(\sqrt{\dfrac{1}{2}}+\sqrt{4,5}+\sqrt{12,5}\)
\(=\sqrt{0,5}+3\sqrt{0,5}+5\sqrt{0,5}=9\sqrt{0,5}\)
c, \(\sqrt{20}-\sqrt{45}+3\sqrt{18}+\sqrt{72}\)
\(=2\sqrt{5}-3\sqrt{5}+3\sqrt{18}+2\sqrt{18}\)
\(=-\sqrt{5}+5\sqrt{18}\)
d, \(0,1.\sqrt{200}+2\sqrt{0,08}+0,4\sqrt{50}\)
\(=\sqrt{0,01.200}+0,2.\sqrt{2}+0,4.5\sqrt{2}\)
\(=\sqrt{2}+0,2\sqrt{2}+2\sqrt{2}=3,2\sqrt{2}\)
Chúc bạn học tốt!!!
câu g
(câu cuối) đề nhiều trôi hết nhìn thấy mỗi câu (g)
\(G=0,1\sqrt{200}+2\sqrt{0,08}+0,4\sqrt{50}\)
\(G=0,1.10\sqrt{2}+\dfrac{2.2}{10}\sqrt{2}+0,4.5\sqrt{2}\)
\(G=\sqrt{2}\left(1+\dfrac{2}{5}+2\right)=\dfrac{\sqrt{2}\left(5+2+10\right)}{5}=\dfrac{17\sqrt{2}}{5}\)
a) \(\sqrt{18}\)-2\(\sqrt{50}\)+\(\sqrt{\left(2-\sqrt{2}\right)^2}\)
=3\(\sqrt{2}\)-10\(\sqrt{2}\)+(2-\(\sqrt{2}\))2
= 3\(\sqrt{2}\)-10\(\sqrt{2}\)+4-2
= -7\(\sqrt{2}\)+2
a) \(\sqrt{18}-2\sqrt{50}+\sqrt{\left(2-\sqrt{2}\right)^2}\)
=\(3\sqrt{2}-10\sqrt{2}+2-\sqrt{2}=2-8\sqrt{2}\)
b)\(\sqrt{\dfrac{1}{3}}+\dfrac{3}{\sqrt{3}}+\dfrac{1}{2-\sqrt{3}}\)
=\(\dfrac{1}{3}\sqrt{3}+\sqrt{3}+\dfrac{1}{2-\sqrt{3}}=\dfrac{4}{3}\sqrt{3}+\dfrac{1}{2-\sqrt{3}}\)
=\(\dfrac{4\sqrt{3}+2+\sqrt{3}}{3}=\dfrac{5\sqrt{3}+2}{3}\)
c)\(\left(1+\sqrt{2}+\sqrt{3}\right)\left(1+\sqrt{2}-\sqrt{3}\right)\)
=\(\left(1+\sqrt{2}\right)^2-3=1+2\sqrt{2}+2-3=2\sqrt{2}\)
d)\(3\sqrt{200}-2\sqrt{0,08}-4\sqrt{\dfrac{9}{8}}\)
=\(30\sqrt{2}-0,4\sqrt{2}-3\sqrt{2}=26.6\sqrt{2}\)
\(a,\sqrt{0,1^2}=0,1\)
\(b,\sqrt{\left(-0,4\right)^2}=|-0,4|=0,4\)
\(c,-\sqrt{\left(-1,7\right)^2}=-|-1,7|=-1,7\)
\(d,-0,5\sqrt{\left(-0,5\right)^4}=\frac{-1}{2}\sqrt{[\left(\frac{-1}{2}\right)^2]^2}=-\frac{1}{2}.\left(\frac{1}{2}\right)^2=\frac{-1}{2}.\frac{1}{4}=\frac{-1}{8}\)
\(e,\sqrt{\left(1-\sqrt{2}\right)^2}=|1-\sqrt{2}|=\sqrt{2}-1\)
\(g,\sqrt{\left(\sqrt{3}-1\right)^2}=|\sqrt{3}-1|=\sqrt{3}-1\)
a: Sửa đề: \(5\dfrac{1}{5}-\dfrac{1}{2}\sqrt{20}+\sqrt{5}\)
\(=5.2-\dfrac{1}{2}\cdot2\sqrt{5}+\sqrt{5}=5.2\)
b: \(=\dfrac{1}{2}\sqrt{2}+\dfrac{3}{2}\sqrt{2}+\dfrac{5}{2}\sqrt{2}=\dfrac{9}{2}\sqrt{2}\)
c: \(=2\sqrt{5}-3\sqrt{5}+9\sqrt{2}+\sqrt{77}=-\sqrt{5}+9\sqrt{2}+\sqrt{77}\)
d: \(=\dfrac{1}{10}\cdot10\sqrt{2}+\dfrac{2}{5}\sqrt{2}+0.4\cdot5\sqrt{2}\)
\(=\dfrac{17}{5}\sqrt{2}\)
@.@ Trời ơi, nhiều thế ^^
a) \(\left(\sqrt{8}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}-3\sqrt{0,4}\right)=\left(2\sqrt{2}-3\sqrt{2}+\sqrt{10}\right)\left(\sqrt{2}-\frac{3\sqrt{2}}{\sqrt{5}}\right)\)
\(=\left(\sqrt{2}.\sqrt{5}-\sqrt{2}\right)\left(\sqrt{2}-\frac{3\sqrt{2}}{\sqrt{5}}\right)=2\sqrt{5}-2-6+\frac{6}{\sqrt{5}}=\frac{16\sqrt{5}}{5}-8\)
b) \(\left(15\sqrt{50}+5\sqrt{200}-3\sqrt{450}\right):\sqrt{10}=\frac{75\sqrt{2}+50\sqrt{2}-45\sqrt{2}}{\sqrt{10}}=\frac{80\sqrt{2}}{\sqrt{10}}=\frac{80}{\sqrt{5}}=16\sqrt{5}\)c) \(\sqrt[3]{20+14\sqrt{2}}+\sqrt[3]{20-14\sqrt{2}}=\sqrt[3]{\left(2+\sqrt{2}\right)^3}+\sqrt[3]{\left(2-\sqrt{2}\right)^3}\)
\(=2+\sqrt{2}+2-\sqrt{2}=4\)
d) \(\sqrt{6+2\sqrt{5}}+\sqrt{6-2\sqrt{5}}=\sqrt{\left(\sqrt{5}+1\right)^2}+\sqrt{\left(\sqrt{5}-1\right)}^2\)
\(=\sqrt{5}+1+\sqrt{5}-1=2\sqrt{5}\)
e) \(\sqrt{11+6\sqrt{2}}-\sqrt{11-6\sqrt{2}}=\sqrt{\left(3+\sqrt{2}\right)^2}-\sqrt{\left(3-\sqrt{2}\right)^2}\)
\(=3+\sqrt{2}-3+\sqrt{2}=2\sqrt{2}\)
f)\(\sqrt[3]{5\sqrt{2}+7}-\sqrt[3]{5\sqrt{2}-7}=\sqrt[3]{\left(1+\sqrt{2}\right)^3}-\sqrt[3]{\left(\sqrt{2}-1\right)^3}=1+\sqrt{2}-\sqrt{2}+1=2\)g) \(\sqrt[3]{26+15\sqrt{3}}-\sqrt[3]{26-15\sqrt{3}}=\sqrt[3]{\left(2+\sqrt{3}\right)^3}-\sqrt[3]{\left(2-\sqrt{3}\right)^3}\)
\(=2+\sqrt{3}-2+\sqrt{3}=2\sqrt{3}\)
\(0,1\sqrt{200}+2\sqrt{0,08}+0,4\sqrt{5}\)
\(=\frac{2\sqrt{5}+7\sqrt{2}}{5}\)