cho 3 số a,b,c thỏa mãn ba điều kiện sau:a<b<_c;
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Từ a+c+d=2 => a+b+c+d = 2+b
a+b+c+d = 1 => 2+b=1 (=a+b+c+d) => b = -1
Tương tự từ a+b+d=3 ta được 3+c = 1
Từ a+b+c=4 ta được 4+d=1
=> b=-1 ; c=-2; d=-3 và tất nhiên a = 7
Ta có:
Dấu “=” xảy ra khi và chỉ khi
Vậy số bộ a,b,c thỏa mãn điều kiện đã cho là 1.
Chọn B.
\(a^3+b^3+c^3-3abc=1\)
\(\Leftrightarrow\left(a+b\right)^3+c^3-3ab\left(a+b\right)-3abc=1\)
\(\Leftrightarrow\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)=1\) (1)
Do \(a^2+b^2+c^2-ab-bc-ca>0\Rightarrow a+b+c>0\)
(1)\(\Leftrightarrow a^2+b^2+c^2-ab-bc-ca=\dfrac{1}{a+b+c}\)
\(\Leftrightarrow a^2+b^2+c^2=ab+bc+ca+\dfrac{1}{a+b+c}\)
\(\Leftrightarrow3a^2+3b^2+3c^2=\left(a+b+c\right)^2+\dfrac{1}{a+b+c}\ge3\)
\(\Rightarrow a^2+b^2+c^2\ge1\)
Bạn có thể giải thích phần (1) <=> với cái đó được ko. Mình vẫn chưa hiểu mấy bước sau lắm
a) Chia hết cho 2 => * = {0; 2; 4; 6; 8}
b) Chia hết cho 5 => * = {0; 5}
c) Chia hết cho cả 2 và 5 => * = 0
a) * ∈ { 0,2,4,6,8}
b) * ∈ {0,5}
c) * = 0
a) x = {6; 5; 4; 3; 2; 1; 0}
b) x = { 35; 36; 37; 38; 39}
c) x = { 217; 218; 219}
`a) A = {6; 5; 4; 3; 2; 1; 0}`
`b) B = { 35; 36; 37; 38; 39}`
`c) C = { 217; 218; 219}`