chia số 15 thành 3 phần tỉ lệ thuận với \(\dfrac{6}{5},\dfrac{3}{2},\dfrac{23}{10}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{2}{3}}=\dfrac{c}{\dfrac{3}{4}}=\dfrac{a+b+c}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}}=\dfrac{69}{\dfrac{23}{12}}=36\)
Do đó: a=18; b=24; c=27
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{1}{2}}=\dfrac{b}{\dfrac{2}{3}}=\dfrac{c}{\dfrac{3}{4}}=\dfrac{a+b+c}{\dfrac{1}{2}+\dfrac{2}{3}+\dfrac{3}{4}}=\dfrac{69}{\dfrac{23}{12}}=36\)
Do đó: a=18; b=24; c=27
Gọi ba phần cần tìm lần lượt là a,b,c
Theo đề, ta có: \(\dfrac{1}{5}a=\dfrac{10}{3}b=\dfrac{4}{5}c\)
=>\(\dfrac{a}{5}=\dfrac{b}{\dfrac{5}{4}}=\dfrac{c}{\dfrac{3}{10}}\)
Áp dụng tính chất của DTSBN, ta được:
\(\dfrac{a}{5}=\dfrac{b}{\dfrac{5}{4}}=\dfrac{c}{\dfrac{3}{10}}=\dfrac{a+b+c}{5+\dfrac{5}{4}+\dfrac{3}{10}}=\dfrac{786}{\dfrac{131}{20}}=120\)
=>a=600; b=150; c=36
Gọi 3 phần được chia là \(x;y;z\)
Theo đề bài ta có:
\(\dfrac{1}{5}x=1\dfrac{1}{4}y=0,03z\)
\(\Rightarrow\dfrac{1}{5}x=\dfrac{5}{4}y=\dfrac{3}{100}z\)
\(\Rightarrow\dfrac{x}{5}=\dfrac{y}{\dfrac{4}{5}}=\dfrac{z}{\dfrac{100}{3}}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\dfrac{x}{5}=\dfrac{y}{\dfrac{4}{5}}=\dfrac{z}{\dfrac{100}{3}}\)
\(=\dfrac{x+y+z}{5+\dfrac{4}{5}+\dfrac{100}{3}}\)
\(=\dfrac{980}{\dfrac{587}{15}}=25...\)
....
Gọi 3 phân số cần tìm là a , b , c .
Vì mẫu số tỉ lệ nghịch với \(\dfrac{1}{4}\),\(\dfrac{1}{5}\),\(\dfrac{1}{6}\) nên sẽ tỉ lệ thuận với 4;5;6
=>a:b:c = \(\dfrac{5}{4}\):\(\dfrac{7}{5}\):\(\dfrac{11}{6}\) = \(\dfrac{5}{4}\).60 : \(\dfrac{7}{5}\).60 : \(\dfrac{11}{6}\).60 = 75:84:110
=>\(\dfrac{a}{75}\)=\(\dfrac{b}{84}\)=\(\dfrac{c}{110}\)
Vì tổng của chúng là\(15\dfrac{83}{120}\) nên a+b+c = \(15\dfrac{83}{120}\)=1883
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\dfrac{a}{75}\)=\(\dfrac{b}{84}\)=\(\dfrac{c}{110}\)=\(\dfrac{a+b+c}{75+84+110}\)=\(\dfrac{1883}{269}\)=7
\(\dfrac{a}{75}\)=7 => a = 75.7 = 525
\(\dfrac{b}{84}\)=7 => b = 84.7 = 588
\(\dfrac{c}{110}\)=7 => c = 110.7 = 770
Vậy 3 phân số tối giản cần tìm là 525 ; 585 ; 770 .
Gọi 3 phân số cần tìm là \(\frac{a}{b};\frac{c}{d};\frac{e}{f}\)
Theo đề bài ta có:
\(\frac{a}{b}+\frac{c}{d}+\frac{e}{f}=15\frac{83}{120}=\frac{1883}{120}\) (1)
\(a\div c\div e=5\div7\div11\Leftrightarrow\frac{a}{5}=\frac{c}{7}=\frac{e}{11}\)
Đặt các tỉ số trên là \(p\)
\(\Rightarrow\left\{\begin{matrix}a=5p\\b=7p\\c=11p\end{matrix}\right.\) (2)
\(b\div d\div f=\frac{1}{\frac{1}{4}}\div\frac{1}{\frac{1}{5}}\div\frac{1}{\frac{1}{6}}=4\div5\div6\Leftrightarrow\frac{b}{4}=\frac{d}{5}=\frac{f}{6}\)
Đặt các tỉ số trên là \(q\)
\(\Rightarrow\left\{\begin{matrix}b=4q\\d=5q\\f=6q\end{matrix}\right.\) (3)
Từ (1);(2) và (3)
\(\Rightarrow\frac{a}{b}+\frac{c}{d}+\frac{e}{f}=\frac{5p}{4q}+\frac{7p}{5q}+\frac{11p}{6q}=\frac{1883}{120}\)
\(\Rightarrow\frac{5}{4}.\frac{p}{q}+\frac{7}{5}.\frac{p}{q}+\frac{11}{6}.\frac{p}{q}=\frac{p}{q}\left(\frac{5}{4}+\frac{7}{5}+\frac{11}{6}\right)=\frac{1883}{120}\)
\(\Rightarrow\frac{269}{60}.\frac{p}{q}=\frac{1883}{120}\Rightarrow\frac{p}{q}=\frac{7}{2}\)
\(\Rightarrow\left\{\begin{matrix}\frac{a}{b}=\frac{5}{4}.\frac{7}{2}=\frac{35}{8}\\\frac{c}{d}=\frac{7}{5}.\frac{7}{2}=\frac{49}{10}\\\frac{e}{f}=\frac{11}{6}.\frac{7}{2}=\frac{77}{12}\end{matrix}\right.\)
Vậy 3 phân số đó là: \(\left\{\begin{matrix}\frac{35}{8}\\\frac{49}{10}\\\frac{77}{12}\end{matrix}\right.\)
Gọi 3 phần cần tìm là \(x,y,z\)
Theo đề bài ta có:
\(x+y+z=980\) và \(x:y:z=\dfrac{1}{5}:1\dfrac{1}{4}:0,3\)
Biến đổi tỉ số giữa các phân số thành tỉ số giữa các số nguyên, ta có:
\(\dfrac{1}{5}:1\dfrac{1}{4}:0,3=\dfrac{1}{5}:\dfrac{5}{4}:\dfrac{3}{10}=\dfrac{4}{20}:\dfrac{25}{20}:\dfrac{6}{20}\)
Do đó: \(\dfrac{x}{4}=\dfrac{y}{25}=\dfrac{z}{6}=\dfrac{x+y+z}{4+25+6}=\dfrac{980}{35}=28\)
Vậy \(\left\{{}\begin{matrix}x=28.4=112\\y=28.25=700\\z=28.6=168\end{matrix}\right.\)
Gọi ba số cần tìm lần lượt là a,b,c
Theo đề, ta có: \(\dfrac{a}{\dfrac{6}{5}}=\dfrac{b}{\dfrac{3}{2}}=\dfrac{c}{\dfrac{23}{10}}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{a}{\dfrac{6}{5}}=\dfrac{b}{\dfrac{3}{2}}=\dfrac{c}{\dfrac{23}{10}}=\dfrac{a+b+c}{\dfrac{6}{5}+\dfrac{3}{2}+\dfrac{23}{10}}=\dfrac{15}{5}=3\)
Do đó: a=3,6; b=4,5; c=6,9