cho tam giác ABC . Các đường cao AD,BE,CF cắt nhau tại H.CMR
\(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=1\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
< Bạn tự vẽ hình nha>
a)Xét ΔABE và ΔACF, ta có:
góc A: chung
góc F=góc E= 90o
Vậy ΔABE ∼ ΔACF (g.g)
b)Xét ΔHEC và ΔHFB là:
góc H: chung
H1=H2(đối đỉnh)
Vậy ΔHEC∼ ΔHFB (g.g)
⇒\(\dfrac{HE}{HF}\)=\(\dfrac{HC}{HB}\)⇔HE.HB=HF.HC
<Mình chỉ biết đến đó thôi>
Ta có : \(\dfrac{HD}{AD}=\dfrac{S_{HBC}}{S_{ABC}}\)( Do có chung đáy BC nên tỉ số hai đường cao bằng tỉ số hai diện tích) ( *)
Tương tự , ta có : \(\dfrac{HE}{BE}=\dfrac{S_{HAC}}{S_{ABC}}\) (**) Và \(\dfrac{HF}{CF}=\dfrac{S_{HAB}}{S_{ABC}}\)(***)
Từ ( *; **; ***) Ta có được :
\(\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=\dfrac{S_{HAC}+S_{HBC}+S_{HAB}}{S_{ABC}}=\dfrac{S_{ABC}}{S_{ABC}}=1\)
Đây là 1 trường hợp của BĐT hình học quan trọng: BĐT Erdos-Mordell
Cách chứng minh bài này y hệt như cách người ta chứng minh BĐT nói trên.
Có khoảng gần 20 cách gì đó, em kiếm trên google thử coi, vì BĐT này quá quen thuộc rồi nên mình sẽ ko chứng minh lại ở đây.
\(Ta.có:\\ S_{HBC}=\dfrac{1}{2}.BH.CD\\ S_{ABC}=\dfrac{1}{2}.BC.AD\\ \Rightarrow\dfrac{HD}{DA}=\dfrac{S_{HBC}}{S_{ABC}}\\ Tương.tự:\dfrac{HE}{BE}=\dfrac{S_{AHC}}{S_{ABC}};\dfrac{HF}{CF}=\dfrac{S_{ABH}}{S_{ABc}}\\ Vậy.\dfrac{HD}{AD}+\dfrac{HF}{CF}+\dfrac{HE}{BE}=\dfrac{S_{BCH}+S_{ACH}+S_{ABH}}{S_{ABC}}=1\)
a,Xét tg DHB và tg DCA có: ^HDB=^CDA=90 độ, ^DBH=^DAC ( cùng phụ với hai góc bằng nhau BHD=^AHE)
Do đó: tg HDB đồng dạng tg DCA (g.g)
Suy ra: HD/DC=BD/DA-> bd*dc=dh*da
b, HD/HA=SBHC/SABC
HE/BE=SAHC/SABC
HF/CF=SHAB/SABC
HD/HA+HE/BE+HF/CF=SBHC/SABC+SAHC/SABC+SAHB/SABC=1
Ta có: \(\dfrac{AD.BC}{2}=S_{ABC}\Rightarrow AD=\dfrac{2S_{ABC}}{BC}\)
\(\Rightarrow\dfrac{HD}{AD}=\dfrac{HD.BC}{2S_{ABC}}\)
Tương tự: \(\dfrac{HE}{BE}=\dfrac{HE.AC}{2S_{ABC}};\dfrac{HF}{CF}=\dfrac{HF.AB}{2S_{ABC}}\)
\(\Rightarrow\dfrac{HD}{AD}+\dfrac{HE}{BE}+\dfrac{HF}{CF}=\dfrac{S_{BHC}+S_{AHC}+S_{AHC}}{S_{ABC}}=1\)