CMR : \(\dfrac{7a^2+3ab}{11a^2-8b^2}\)=\(\dfrac{7c^2+3cd}{11d^2-8d^2}\) biết rằng \(\dfrac{a}{b}\)=\(\dfrac{c}{d}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Leftrightarrow\left\{{}\begin{matrix}a=bk\\c=dk\end{matrix}\right.\)
\(VT:\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\\ VP:\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}=\dfrac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\\ \Rightarrow VT=VP\\ \Rightarrowđpcm\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow\left\{{}\begin{matrix}a=kb\\c=kd\end{matrix}\right.\)
Ta có:
\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7\left(kb\right)^2+3\left(kb\right).b}{11\left(kb\right)^2-8b^2}=\dfrac{7k^2+3k}{11k^2-8}\) (1)
\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7\left(kd\right)^2+3\left(kd\right)d}{11\left(kd\right)^2-8d^2}=\dfrac{7k^2+3k}{11k^2-8}\) (2)
(1),(2) \(\Rightarrow\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk;c=dk\)
\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\left(1\right)\)
\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}=\dfrac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\left(2\right)\)
\(\left(1\right)\left(2\right)\RightarrowĐpcm\)
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
\(\Rightarrow a=bk;c=dk\)
Ta có: \(VT=\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7bk^2+3bkb}{11bk^2-8b^2}=\dfrac{7b^2k^2+3b^2k}{11b^2k^2-8b^2}=\dfrac{b^2\left(7k^2+3k\right)}{b^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\)
\(VP=\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7dk^2+3dkd}{11dk^2-8d^2}=\dfrac{7d^2k^2+3d^2k}{11d^2k^2-8d^2}=\dfrac{d^2\left(7k^2+3k\right)}{d^2\left(11k^2-8\right)}=\dfrac{7k^2+3k}{11k^2-8}\)
\(\Rightarrow VT=VP\)
Vậy \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\left(đpcm\right)\)
Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) CMR:
\(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
Đặt: \(\dfrac{a}{b}=\dfrac{c}{d}=t\Leftrightarrow\left\{{}\begin{matrix}a=bt\\c=dt\end{matrix}\right.\)
Ta có: \(\left\{{}\begin{matrix}\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7b^2t^2+3b^2t}{11b^2t^2-8b^2}=\dfrac{b^2\left(7t^2+3t\right)}{b^2\left(11t^2-8\right)}=\dfrac{7t^2+3t}{11t^2-8}\\\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7d^2t^2+3d^2t}{11d^2t^2-8d^2}=\dfrac{d^2\left(7t^2+3t\right)}{d^2\left(11t^2-8\right)}=\dfrac{7t^2+3t}{11t^2-8}\end{matrix}\right.\Rightarrowđpcm\)
Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
nên \(\dfrac{5a}{3b}=\dfrac{5c}{3d}\)
hay \(\dfrac{5a}{5c}=\dfrac{3b}{3d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
\(\Leftrightarrow\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)
hay \(\dfrac{5a+3n}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)(đpcm)
Cho \(\dfrac{a}{b}\) như thế nào thì mới chứng minh được chứ em
Đề thiếu rồi bạn nhé. Bạn tham khảo ở đây.
https://hoc24.vn/cau-hoi/hep-mecho-dfracabdfraccd-chung-minhdfrac7a23ab11a2-8b2dfrac7c23cd11c2-8d2.1358224776256
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\Rightarrow a=bk,c=dk\)
a) \(\dfrac{a^2-b^2}{c^2-d^2}=\dfrac{b^2k^2-b^2}{d^2k^2-d^2}=\dfrac{b^2}{d^2}\)\(=\dfrac{\dfrac{a}{k}.b}{\dfrac{c}{k}.d}=\dfrac{ab}{cd}=VT\)
Vậy...
b) \(\dfrac{5a+3b}{5a-3b}=\dfrac{5bk+3b}{5bk-3b}=\dfrac{5k+3}{5k-3}\)
\(\dfrac{5c+3d}{5c-3d}=\dfrac{5dk+3d}{5dk-3d}=\dfrac{5k+3}{5k-3}\)
Suy ra \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\)
c) \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7\left(bk\right)^2+3\left(bk\right).b}{11\left(bk\right)^2-8b^2}\)\(=\dfrac{7k^2+3k}{11k^2-8}\)
\(\dfrac{7c^2+3cd}{11c^2-8d^2}=\dfrac{7\left(dk\right)^2+3\left(dk\right).d}{11\left(dk\right)^2-8d^2}=\dfrac{7k^2+3k}{11k^2-8}\)
Suy ra \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)
a) Có: \(\dfrac{a}{b}=\dfrac{c}{d}\)
=> \(ad=bc\)
=> \(\dfrac{a}{c}=\dfrac{b}{d}\) => \(\left(\dfrac{a}{c}\right)^2=\left(\dfrac{b}{d}\right)^2=\dfrac{ab}{cd}=\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{a^2-b^2}{c^2-d^2}\)
(theo tính chất dãy tỉ số bằng nhau)
=> (đpcm)
b) Có: \(\dfrac{a}{b}=\dfrac{c}{d}\) => \(\dfrac{a}{c}=\dfrac{b}{d}\)
=> \(\dfrac{5a}{5c}=\dfrac{3b}{3d}=\dfrac{5a+3b}{5c+3d}=\dfrac{5a-3b}{5c-3d}\)(theo tính chất dãy tỉ số bằng nhau)
=> \(\dfrac{5a+3b}{5a-3b}=\dfrac{5c+3d}{5c-3d}\) (đpcm)
c) Có: \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)
=> \(\dfrac{a^2}{c^2}=\dfrac{ab}{cd}=\dfrac{b^2}{d^2}\) => \(\dfrac{7a^2}{7c^2}=\dfrac{3ab}{3cd}=\dfrac{11a^2}{11c^2}=\dfrac{8b^2}{8d^2}\)
=> \(\dfrac{7a^2+3ab}{7c^2+3cd}=\dfrac{11a^2-8b^2}{11c^2-8d^2}\) (theo tính chất dãy tỉ số bằng nhau)
=> \(\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\)(đpcm)
#Ayumu
Từ \(\dfrac{a}{b}=\dfrac{c}{d}\Rightarrow\dfrac{a}{c}=\dfrac{b}{d}\Rightarrow\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{ab}{cd}\)
Áp dụng tính chất dãy tỉ số bằng nhau, ta có:
\(\dfrac{a^2}{c^2}=\dfrac{ab}{cd}=\dfrac{7a^2}{7c^2}=\dfrac{3ab}{3cd}=\dfrac{7a^2+3ab}{7c^2+3cd}\)
\(\dfrac{a^2}{c^2}=\dfrac{b^2}{d^2}=\dfrac{11a^2}{11c^2}=\dfrac{8b^2}{8d^2}=\dfrac{11a^2-8b^2}{11c^2-8d^2}\)
⇒\(\dfrac{7a^2+3ab}{7c^2+3cd}=\dfrac{11a^2-8b^2}{11c^2-8d^2}\)
\(\Rightarrow\dfrac{7a^2+3ab}{11a^2-8b^2}=\dfrac{7c^2+3cd}{11c^2-8d^2}\left(đpcm\right)\)
thank bn nha