K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 11 2017

\(1^2-2^2+3^2-4^2+5^2-6^2+........+99^2-100^2\)

\(=\left(1^2-2^2\right)+\left(3^2-4^2\right)+\left(5^2-6^2\right)+........+\left(99^2-100^2\right)\)

\(=\left(1+2\right)\left(1-2\right)+\left(3+4\right)\left(3-4\right)+\left(5+6\right)\left(5-6\right)........+\left(99+100\right)\left(99-100\right)\)

\(=-1\left(1+2\right)+-1\left(3+4\right)+-1\left(5+6\right)+........+-1\left(99+100\right)\)

\(=-1\left[\left(1+2\right)+\left(3+4\right)+\left(5+6\right)+........+\left(99+100\right)\right]\)

\(=-1\left(3+7+11+........+199\right)\)

\(=-1.\left\{\dfrac{\left(199+3\right).\left[\left(199-3\right):4+1\right]}{2}\right\}\)

\(=-1.\left[\dfrac{202.\left(196:4+1\right)}{2}\right]\)

\(=-1.\left[\dfrac{202.\left(49+1\right)}{2}\right]\)

\(=-1.\dfrac{202.50}{2}\)

\(=-1.\dfrac{10100}{2}\)

\(=-1.5050\)

\(=-5050\)

6 tháng 5 2021

       A = 1*2*3 + 2*3*4 + 3*4*5 ... + 99*100*101

=> 4A = 1*2*3*4 + 2*3*4*4 + 3*4*5*4 + ... +99*100*101*4

=> 4A = 1*2*3*4 + 2*3*4*(5 - 1) + 3*4*5*( 6 - 2) + ... + 99*100*101*(102 - 98)

=> 4A = 1*2*3*4 + 2*3*4*5 - 1*2*3*4 + 3*4*5*6 - 2*3*4*5 + ... + 99*100*101*102 - 98*99*100*101

=> 4A = 99*100*101*102

=> 4A = 101989800

=>   A = 25497450

Bài 1: 

a: \(2A=2^{101}+2^{100}+...+2^2+2\)

\(\Leftrightarrow A=2^{100}-1\)

b: \(3B=3^{101}+3^{100}+...+3^2+3\)

\(\Leftrightarrow2B=3^{100}-1\)

hay \(B=\dfrac{3^{100}-1}{2}\)

c: \(4C=4^{101}+4^{100}+...+4^2+4\)

\(\Leftrightarrow3C=4^{101}-1\)

hay \(C=\dfrac{4^{101}-1}{3}\)

 

4 tháng 10 2022

ai bt tự làm

 

15 tháng 4 2023

ngu tự chịu

5 tháng 12

Cho mik hỏi cách làm bài này

Tính nhanh 1 1/2x1 1/3 × 11/4×...x 1 1/99×1 1/100

7 tháng 8 2018

Ta chia thành hai vế (1) và (2)

Số số hạng (1) là :

( 101 - 1 ) : 1 + 1 = 101  ( số )

Tổng (1) là :

( 101 + 1 ) x 101 : 2 = 5151

Tự tính tiếp

DD
27 tháng 5 2021

\(1+\left(1+2\right)+\left(1+2+3\right)+...+\left(1+2+3+...+99+100\right)\)

\(=\left(1+1+1+...+1\right)+\left(2+2+...+2\right)+\left(3+...+3\right)+...+\left(99+99\right)+100\)

\(=1.100+2.99+3.98+...+99.2+100.1\)

Do đó kết quả của phép tính cần tìm là: 

\(\frac{1.100+2.99+...+99.2+100.1}{\left(1.100+2.99+...+99.2+100.1\right).2013}=\frac{1}{2013}\)

8 tháng 2 2018

ai biết trả lời nhanh giúp mình nhé