tính 1.2.3 + 2.3.4 + 3.4.5 + 4.5.6 +........+ n.(n+1)(n+2)
help me!
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
4N = 1.2.3.(4-0) + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + 2015.2016.2017.(2018-2014)
4N = 1.2.3.4 - 0.1.2.3 + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 2015.2016.2017.2018 - 2014.2015.2016.2017
4N = (1.2.3.4 + 2.3.4.5 + 3.4.5.6 + ... + 2015.2016.2017.2018) - (0.1.2.3 + 1.2.3.4 + 2.3.4.5 + ... + 2014.2015.2016.2017)
4N = 2015.2016.2017.2018 - 0.1.2.3
4N = 2015.2016.2017.2018
N = 2015.2016.504.2018 (kq hơi to nên bn tự tính nhé)
4N = 1.2.3.4+ 2.3.4.4 + .... + 19.20.21.4
4N = 1.2.3.(4-0) + ...+ 19.20.21.(22-18)
4N = 1.2.3.4 - 0.1.2.3 + .... + 19.20.21.22-18.19.20.21
4N = 19.20.21.22
N = 19.5.21.22
Bài 1:
uses crt;
var n,i,t1,t2:integer;
begin
clrscr;
write('Nhap n='); readln(n);
t1:=0;
for i:=1 to n do
t1:=t1+i*(i+1)*(i+2);
t2:=0;
for i:=1 to n do
begin
if i mod 2<>0 then t2:=t2+i*(i+1)*(i+2)
else t2:=t2-i*(i+1)*(i+2);
end;
writeln('T1=',t1);
writeln('T2=',t2);
readln;
end.
Bài 2:
uses crt;
var i,dem,n:integer;
begin
clrscr;
write('Nhap n='); readln(n);
dem:=0;
writeln('Cac uoc cua mot so ',n,' la: ');
for i:=1 to n do
if n mod i=0 then
begin
write(i:4);
dem:=dem+1;
end;
writeln;
writeln('So luong uoc cua ',n,' la: ',dem);
readln;
end.
Em nói thật em mới học lớp 6 Màu em đã phải làm bài này rồi thật đấu không phải đùa đâu
Đặt A=1.2.3+2.3.4+.....+5.6.7
4A=1.2.3.4+2.3.4.(5-1)+.........+5.6.7.(8-4)
4A=1.2.3.4+2.3.4.5-1.2.3.4+........+5.6.7.8-4.5.6.7
4A=5.6.7.8
A=5.6.7.8:4
A=420
A=1(2+1)+2(3+1)+3(4+1)+...+99(100 +1 )
A=1.2+1+2.3+2+3.4+3...99.100+99
A=(1.2+2.3+3.4+...99.100)+(1+2+3+4...99)
giải:
Đặt A=1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100
4A=(1.2.3+2.3.4+3.4.5+4.5.6+...+98.99.100)4
4A=1.2.3(4-0)+2.3.4(5-1)+3.4.5(6-2)+4.5.6(7-3)+...+98.99.100(101-97)
4A=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+4.5.6.7-3.4.5.6+...+98.99.100.101-97.98.99.100
4A=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-3.4.5.6+...+97.98.99.100-97.98.99.100+98.99.100.101
4A=98.99.100.101
=>A=98.99.100.101/4
4A = 4.[1.2.3 + 2.3.4 + 3.4.5 + … + (n – 1).n.(n + 1)]
4A = 1.2.3.4 + 2.3.4.4 + 3.4.5.4 + … + (n – 1).n.(n + 1).4
4A = 1.2.3.4 + 2.3.4.(5 – 1) + 3.4.5.(6 – 2) + … + (n – 1).n.(n + 1).[(n + 2) – (n – 2)]
4A = 1.2.3.4 + 2.3.4.5 – 1.2.3.4 + 3.4.5.6 – 2.3.4.5 + … + (n – 1).n(n + 1).(n + 2) – (n – 2).(n – 1).n.(n + 1)
4A = (n – 1).n(n + 1).(n + 2)
A = (n – 1).n(n + 1).(n + 2) : 4.
A=1.2.3+2.3.4+...+2416.2417.2418=(2416.2417.2418.2419):4
B=1.2.3-2.3.4+...+2415.2416.2417-2416.2417.2418
A+B=2(1.2.3+3.4.5+...+2415.2416.2417)=2C
Xét C=1.2.3+3.4.5+...+2415.2416.2417
=1.3(5-3)+3.5(7-3)+...+2415.2417.(2419-3)
=1.3.5+3.5.7+...+2415.2417.2419-3(1.3+3.5+...2415.2417)
=(1.3.5.7+3.5.7.(9-1)+...+2415.2417.2419.(2421-2413)):8-3.(1.3+1.3.5+3.5.(7-1)+...+2415.2417(2419-2413)):6
=2415.2417.2419.2421:8-3.(1.3+2415.2417.2419):6
=> B=2C-A
Ko chắc lắm
minh chi can ket qua thoi cung duoc ko can giai ra dau
ai lam dung minh kick
Đặt biểu thức trên = A
Xét : B = 1.2.3+2.3.4+....+n.(n+1).(n+2)
4B = 1.2.3.4+2.3.4.4+....+n.(n+1).(n+2).4
= 1.2.3.4+2.3.4.(5-1)+....+n.(n+1).(n+2).[(n+3)-(n-1)]
= 1.2.3.4+2.3.4.5-1.2.3.4+....+n.(n+1).(n+2).(n+3)-(n-1).n.(n+1).(n+2)
= n.(n+1).(n+2).(n+3)
=> B = n.(n+1).(n+2).(n+3)/4
=> A = 222315.222316.222317.222318/4
k mk nha
Đặt
\(A=1\cdot2\cdot3+2\cdot3\cdot4+3\cdot4\cdot5+4\cdot5\cdot6+.......+n\left(n+1\right)\left(n+2\right)\)\(4A=1\cdot2\cdot3\cdot4+2\cdot3\cdot4\cdot4+3\cdot4\cdot5\cdot4+.......+n\left(n+1\right)\left(n+2\right)\cdot4\)\(4A=1\cdot2\cdot3\cdot\left(4-0\right)+2\cdot3\cdot4\cdot\left(5-1\right)+3\cdot4\cdot5\cdot\left(6-2\right)+........+n\left(n+1\right)\left(n+2\right)\left(n+3-n-1\right)\)\(4A=1\cdot2\cdot3\cdot4-0+2\cdot3\cdot4\cdot5-1\cdot2\cdot3\cdot4+....+n\left(n+1\right)\left(n+2\right)\left(n+3\right)-\left(n-1\right)n\left(n+1\right)\left(n+2\right)\)\(4A=n\left(n+1\right)\left(n+2\right)\left(n+3\right)\)
\(A=\dfrac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)
Vậy \(A=\dfrac{n\left(n+1\right)\left(n+2\right)\left(n+3\right)}{4}\)