K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Câu 3: 

\(\overrightarrow{BA}=\left(7;3\right)\)

\(\overrightarrow{BC}=\left(3;-7\right)\)

Vì \(\overrightarrow{BA}\cdot\overrightarrow{BC}=0\)

nên ΔABC vuông tại B

1 tháng 6 2020

tự làm là hạnh phúc của mỗi công dân.

8 tháng 1 2022

Xemundefined

14 tháng 12 2023

1: Xét (O) có

MA,MB là các tiếp tuyến

Do đó:MA=MB

=>M nằm trên đường trung trực của AB(1)

Ta có: OA=OB

=>O nằm trên đường trung trực của AB(2)

Từ (1) và (2) suy ra MO là đường trung trực của AB

=>MO\(\perp\)AB tại H và H là trung điểm của AB

2: Ta có: ΔOAM vuông tại A

=>\(AO^2+AM^2=OM^2\)

=>\(AM^2=\left(2R\right)^2-R^2=3R^2\)

Xét ΔAMO vuông tại A có AH là đường cao

nên \(MH\cdot MO=MA^2\)

=>\(MH\cdot MO=3R^2\)

3:

Xét ΔOAM vuông tại A có \(sinAMO=\dfrac{OA}{OM}=\dfrac{1}{2}\)

nên \(\widehat{AMO}=30^0\)

Xét (O) có

MA,MB là các tiếp tuyến

Do đó: MO là phân giác của góc AMB

=>\(\widehat{AMB}=2\cdot\widehat{AMO}=2\cdot30^0=60^0\)

Xét ΔMAB có MA=MB và \(\widehat{AMB}=60^0\)

nên ΔMAB đều

4: Xét (O) có

\(\widehat{MAI}\) là góc tạo bởi tiếp tuyến AM và dây cung AI

\(\widehat{IKA}\) là góc nội tiếp chắn cung AI

Do đó: \(\widehat{MAI}=\widehat{IKA}\)

Xét ΔMAI và ΔMKA có

\(\widehat{MAI}=\widehat{MKA}\)

\(\widehat{AMI}\) chung

Do đó: ΔMAI đồng dạng với ΔMKA

=>\(\dfrac{MA}{MK}=\dfrac{MI}{MA}\)

=>\(MA^2=MI\cdot MK\)

mà \(MA^2=MH\cdot MO\)

nên \(MI\cdot MK=MH\cdot MO\)

Ta có: \(\widehat{MAI}+\widehat{OAI}=\widehat{OAM}=90^0\)

\(\widehat{HAI}+\widehat{OIA}=90^0\)(ΔAHI vuông tại H)

mà \(\widehat{OAI}=\widehat{OIA}\)(ΔOAI cân tại O)

nên \(\widehat{MAI}=\widehat{HAI}\)

=>AI là phân giác của góc MAH

11 tháng 11 2018

@ Trần Ngọc Huyền @  Em lần sau nhớ chia bài ra đăng nhiều lần nhé! . 

29 tháng 11 2019

Đồng ý với cô Nguyễn Thị Linh Chi

Đăng nhiều thế mới nhìn đã choáng

a: ΔABC vuông tại A

mà OA là trung tuyến

nên OA=OB

Xét ΔOAM vuông tại A và ΔOBM vuông tại B có 
OM  chung

OA=OB

=>ΔOAM=ΔOBM

=>MA=MB

b: OA=OB

MA=MB

=>OM là trung trực của AB

=>I là trung điểm của AB

30 tháng 5 2018

A B M O C D K H I

1) Xét tứ giác OKAC: ^OKC=900; ^OAC=900 (Do MA là tiếp tuyến của (O))

=> Tứ giác OKAC là tứ giác nội tiếp đường tròn. (Tâm là trung điểm OC) 

Xét tứ giác OKDB: ^OKD=^OBD=900 => Tứ giác OKDB nội tiếp đường tròn. (Tâm là trung điểm OD)

2) Ta có: Tứ giác OKAC nội tiếp đường tròn => ^OCK=^OAK.

Lại có: \(\Delta\)AOB cân tại O => ^OAB=^OBA hay ^OAK=^OBK

=> ^OCK=^OBK. Mà tứ giác OBDK nội tiếp đường tròn => ^OBK=^ODK

Nên ^OCK=^ODK => \(\Delta\)COD cân tại O => OC=OD (đpcm).

3) Nối D với H.

Xét \(\Delta\)COD cân tại O có OK là đường cao => OK đồng thời là đường trung tuyến => CK=DK.

Xét \(\Delta\)CAK và \(\Delta\)DHK: AK=HK; ^CKA=^DKH (Đối đỉnh); CK=DK

=> \(\Delta\)CAK = \(\Delta\)DHK (c.g.c) => ^ACK = ^HDK (2 góc tương ứng)

Mà 2 góc trên ở vị trí so le trg nên AC // HD hay AM // HD.

Xét \(\Delta\)AMB: MA=MB (T/c 2 tiếp tuyến cắt nhau) => \(\Delta\)AMB cân tại M.

Lại có: MO hay MH là phân giác ^AMB => MH là đường trung tuyến => H là trung điểm AB.

Ta thấy: \(\Delta\)AMB có H là trung điểm AB; HD // AM ; D thuộc BM => D là trung điểm BM

Mà I là trung điểm AM => ID là đường trung bình của \(\Delta\)MAB => ID // AB 

Dễ thấy MO vuông góc AB tại H => ID vuông góc với MO (Quan hệ //, vg góc) (đpcm).

a: Xét ΔAMB vuông tại M và ΔAPD vuông tại P có

AB=AD

góc A chung

Do đó: ΔAMB=ΔAPD

=>AM=AP

Xét ΔAMH vuông tại M và ΔAPH vuông tại P có

AH chung

AM=AP

Do đó: ΔAMH=ΔAPH

=>góc MAH=góc PAH

=>AH là phân giác của góc BAD(1)

ΔABD cân tại A

mà AO là trung tuyến

nên AO là phân giác của góc BAD(2)

Từ (1), (2) suy ra A,H,O thẳng hàng

b: Xét ΔCDB có

DQ,BN là đường cao

DQ cắt BN tại K

Do đó; K là trực tâm của ΔCDB

=>CK vuông góc BD

ΔCBD cân tại C

mà CO là trung tuyến

nên CO vuông góc BD

=>C,K,O thẳng hàng

C,K,O thẳng hàng

A,H,O thẳng hàng

A,O,C thẳng hàng(ABCD là hình thoi có O là giao của hai đường chéo AC và BD)

Do đó: C,K,O,H,A thẳng hàng

=>A,H,K,C thẳng hàng

=>HK vuông góc DB

c: Xét tứ giác BHDK có

BH//DK

BK//DH

Do đó: BHDK là hình bình hành

mà HK vuông góc BD

nên BHDK là hình thoi