Cho x-y=4 , x.y=5 tính B=x^3-y^3+(x-y)^2
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(x^2+y^2=\left(x+y\right)^2-2xy=a^2-2b\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3ab\)
\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left(a^2-2b\right)^2-2b^2\)
\(=a^4-4a^2b+4b^2-2b^2=a^4-4a^2b+2b^2\)
\(x^5+y^5=\left(x+y\right)^5-\left(5x^4y+10x^3y^2+10x^2y^3+5xy^4\right)\)
\(=\left(x+y\right)^5-5xy\left(x^3+y^3\right)-10x^2y^2\left(x+y\right)\)
\(=a^5-5\left(a^3-3ab\right)b-10ab^2\)
\(=a^5-5a^3b+15ab^2-10ab^2\)
\(=a^5-5a^3b+5ab^2\)
\(x^2+y^2=\left(x+y\right)^2-2xy=a^2-2b\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3ab\)
\(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=\left[\left(x+y\right)^2-2xy\right]^2-2x^2y^2=\left(a^2-2b\right)^2-2b^2\)
\(=a^2-4a^2b+2b^2\)
\(x^5+y^5=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)=\left(a^2-2b\right)\left(a^3-3ab\right)-ab^2\)
Đề sai rồi, không thể tồn tại x; y sao cho \(\left\{{}\begin{matrix}x+y=3\\xy=5\end{matrix}\right.\) được
Vì \(\left(x+y\right)^2\ge4xy;\forall x;y\) nên \(3^2>4.5\) là vô lý
a: \(x^2+y^2=\left(x+y\right)^2-2xy=3^2-2\cdot5=-1\)
b: \(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=3^3-3\cdot3\cdot5=-18\)
CÓ: \(x^2+y^2=\left(x+y\right)^2-2xy=3^2-2.2=5\)
CÓ: \(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)=3\left(5-2\right)=3.3=9\)
CÓ: \(x^4+y^4=\left(x^2+y^2\right)^2-2x^2y^2=5^2-2.2^2=25-8=17\)
CÓ: \(x^5+y^5=\left(x^4+y^4\right)\left(x+y\right)-x^4y-xy^4=3.17-xy\left(x^3+y^3\right)\)
\(=51-2.9=51-18=33\)
CÓ: \(x^6+y^6=\left(x+y\right)\left(x^5+y^5\right)-xy^5-x^5y\)
\(=3.33-xy\left(x^4+y^4\right)=3.33-2.17\)
\(=99-34=65\)
\(x^2+y^2=\left(x+y\right)^2-2xy=3^2-2.2=9-4=5\)
\(x^3+y^3=\left(x+y\right)^3-3xy\left(x+y\right)=3^3-3.2.3=27-18=9\)
\(x^4+y^4=\left(x+y\right)^4-4xy\left(x^2+y^2\right)-3xy.2xy\)
\(=3^4-4.2.5-3.2.2.2=81-40-24=17\)
a.)=(x+y)^2 mà x+y=5 =>5^2=25
b.) làm như ý a.) =5^3=125
c.)=625
d.)=3125
a)
A=\(x^2+y^2=\left(x^2+2xy+y^2\right)-2xy=\left(x+y\right)^2-2xy=a^2-2b\)
\(B=x^3+y^3=\left(x^3+3x^2y+3xy^2+y^3\right)-3x^2y-3xy^2=\left(x+y\right)^3-3xy\left(x+y\right)=a^3-3ab\)
\(C=x^5+y^5=\left(x^5+y^5+5x^4y+10x^3y^2+10x^2y^3+5xy^4\right)-5x^4y-10x^3y^2-10x^2y^3-5xy^4\)
\(=\left(x+y\right)^5-5xy\left(x^3+2xy^2+2x^2y+y^3\right)=\left(x+y\right)^5-5xy\left(x^3+3xy^2+3x^2y+y^3-xy^2-x^2y\right)\)
\(=\left(x+y\right)^5-5xy\left(\left(x+y\right)^3-xy\left(x+y\right)\right)=a^5-5b\left(a^3-ab\right)\)
Bài 1:
a, \(x^2\) +2\(x\) = 0
\(x.\left(x+2\right)\) = 0
\(\left[{}\begin{matrix}x=0\\x+2=0\end{matrix}\right.\)
\(\left[{}\begin{matrix}x=0\\x=-2\end{matrix}\right.\)
\(x\) \(\in\) {-2; 0}
b, (-2.\(x\)).(-4\(x\)) + 28 = 100
8\(x^2\) + 28 = 100
8\(x^2\) = 100 - 28
8\(x^2\) = 72
\(x^2\) = 72 : 8
\(x^2\) = 9
\(x^2\) = 32
|\(x\)| = 3
\(\left[{}\begin{matrix}x=-3\\x=3\end{matrix}\right.\)
Vậy \(\in\) {-3; 3}
c, 5.\(x\) (-\(x^2\)) + 1 = 6
- 5.\(x^3\) + 1 = 6
5\(x^3\) = 1 - 6
5\(x^3\) = - 5
\(x^3\) = -1
\(x\) = - 1
Sửa đề: Các dấu bằng ở yêu cầu là dấu cộng.
1. Có: \(x+y=3\)
\(\Leftrightarrow\left(x+y\right)^2=3^2\)
\(\Leftrightarrow x^2+2xy+y^2=9\)
\(\Leftrightarrow x^2+y^2=9-2\cdot1=7\) (do \(xy=1\))
\(------\)
Lại có: \(x+y=3\)
\(\Leftrightarrow\left(x+y\right)^3=3^3\)
\(\Leftrightarrow x^3+y^3+3xy\left(x+y\right)=27\)
\(\Leftrightarrow x^3+y^3+3\cdot1\cdot3=27\) (do x + y = 3; xy = 1)
\(\Leftrightarrow x^3+y^3=18\)
Ta có: \(x^2+y^2=7\)
\(\Leftrightarrow\left(x^2+y^2\right)^2=7^2\)
\(\Leftrightarrow x^4+y^4+2\cdot\left(xy\right)^2=49\)
\(\Leftrightarrow x^4+y^4=49-2\cdot1=47\) (do xy = 1)
Bài 2:
Đặt \(\dfrac{x}{3}=\dfrac{y}{4}=k\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k\\y=4k\end{matrix}\right.\)
Ta có: xy=12
\(\Leftrightarrow12k^2=12\)
\(\Leftrightarrow k^2=1\)
Trường hợp 1: k=1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=3\\y=4k=4\end{matrix}\right.\)
Trường hợp 2: k=-1
\(\Leftrightarrow\left\{{}\begin{matrix}x=3k=-3\\y=4k=-4\end{matrix}\right.\)
\(B=x^3-y^3+\left(x-y\right)^2\)
\(=\left(x-y\right)^3+3xy\left(x-y\right)+\left(x-y\right)^2\)
\(=4^3+3\cdot5\cdot4+4^2\)
\(=64+16+60\)
=140
\(B=x^3-y^3+\left(x-y\right)^2=\left(x-y\right)\left(x^2+xy+y^2\right)+\left(x-y\right)^2=\left(x-y\right)\left(x^2+xy+y^2+x-y\right)=\left(x-y\right)\left[\left(x-y\right)^2+\left(x-y\right)+3xy\right]=4\left(4^2+4+3.5\right)=140\)