CMR mọi số thực khác không x,y ta có :
\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\ge3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Lời giải:
Áp dụng BĐT AM-GM:
\(\frac{x^2}{y}+\frac{y^2}{x}+\sqrt{xy}=\frac{x^3+y^3}{2xy}+\frac{x^3+y^3}{2xy}+\sqrt{xy}\geq 3\sqrt[3]{\frac{(x^3+y^3)^2}{4xy\sqrt{xy}}}\)
Bằng BĐT AM-GM, dễ thấy:
\(x^3+y^3\geq \frac{1}{2}(x+y)(x^2+y^2)\geq \sqrt{xy}(x^2+y^2)\)
\(\Rightarrow (x^3+y^3)^2\geq xy(x^2+y^2)^2=xy\sqrt{x^2+y^2}.\sqrt{(x^2+y^2)^3}\geq xy\sqrt{2xy}\sqrt{(x^2+y^2)^3}\)
\(\Rightarrow \frac{x^2}{y}+\frac{y^2}{x}+\sqrt{xy}\geq 3\sqrt[3]{\frac{\sqrt{2}(x^2+y^2)^{\frac{3}{2}}}{4}}=3\sqrt{\frac{x^2+y^2}{2}}\)
Ta có đpcm
Dấu "=" xảy ra khi $x=y$
\(BDT\Leftrightarrow\dfrac{x^4}{x^2y^2}+\dfrac{y^4}{x^2y^2}+\dfrac{4x^2y^2}{x^2y^2}\ge3\left(\dfrac{x^2}{xy}+\dfrac{y^2}{xy}\right)\)
\(\Leftrightarrow\dfrac{x^4+y^4-2x^2y^2+6x^2y^2}{x^2y^2}\ge\dfrac{3\left(x^2+y^2\right)}{xy}\)
\(\Leftrightarrow\dfrac{x^4+y^4-2x^2y^2}{x^2y^2}\ge\dfrac{3x^2+3y^2}{xy}-\dfrac{6xy}{xy}\)
\(\Leftrightarrow\dfrac{\left(x^2-y^2\right)^2}{x^2y^2}\ge\dfrac{3\left(x^2-2xy+y^2\right)}{xy}=\dfrac{3\left(x-y\right)^2}{xy}\)
\(\Leftrightarrow\left(x-y\right)^2\left[\dfrac{\left(x+y\right)^2-3xy}{x^2y^2}\right]\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left(\dfrac{x^2+y^2-xy}{x^2y^2}\right)\ge0\) (luôn đúng)
Vậy BĐT đã được chứng minh
\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\ge3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)
\(\Leftrightarrow\dfrac{2x^2}{y^2}+\dfrac{2y^2}{x^2}+8\ge6\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)
\(\Leftrightarrow\left(\dfrac{x^2}{y^2}+2+\dfrac{y^2}{x^2}\right)-4\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+4+\left(\dfrac{x^2}{y^2}-2.\dfrac{x}{y}+1\right)+\left(\dfrac{y^2}{x^2}-2.\dfrac{y}{x}+1\right)\ge0\)\(\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{y}{x}-2\right)^2+\left(\dfrac{x}{y}-1\right)^2+\left(\dfrac{y}{x}-1\right)^2\ge0\) (đúng)
cách khác
đặt \(\dfrac{x}{y}+\dfrac{y}{x}=t\Rightarrow\left|t\right|\ge2\)
\(\Leftrightarrow t^2-3t+2\ge0\)
\(\Leftrightarrow\left(t-1\right)\left(t-2\right)\ge0\)
điều này luôn đúng với mọi |t| >=2 => dpcm
kết luận điều kiện đề hơi thừa
cái cần c/m đúng với mọi x,y khác 0
\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\ge3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)
\(\Leftrightarrow2\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\right)\ge6\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)
\(\Leftrightarrow\dfrac{2x^2}{y^2}+\dfrac{2y^2}{x^2}+8\ge\dfrac{6x}{y}+\dfrac{6y}{x}\)
\(\Leftrightarrow\left(\dfrac{x^2}{y^2}+2+\dfrac{y^2}{x^2}\right)-4\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+4+\dfrac{x^2}{y^2}-2.\dfrac{x}{y}+1+\dfrac{y^2}{x^2}-2.\dfrac{y}{x}+1\ge0\)
\(\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2-4.\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+4+\left(\dfrac{x}{y}-1\right)^2+\left(\dfrac{y}{x}-1\right)^2\ge0\)
\(\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{y}{x}-2\right)^2+\left(\dfrac{x}{y}-1\right)^2+\left(\dfrac{y}{x}-1\right)^2\ge0^{\left(1\right)}\)
\(^{\left(1\right)}\)đúng \(\Rightarrowđpcm\)
Áp dụng BĐT : x4 + y4 ≥ 2x2y2
=> \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\) ≥ 2 ( x , y > 0 )
TT , \(\dfrac{x}{y}+\dfrac{y}{x}\) ≥ 2 ( x , y > 0 )
Ta có : \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\) + 4 ≥ 6 ( 1 )
\(3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\) ≥ 6 ( 2 )
Từ ( 1 ; 2) => đpcm
Đề bài sai, đề đúng thì phân thức đằng sau dấu chia phải là:
\(\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)
Điều kiện là \(xy\ne0\)
BĐT tương đương:
\(\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2-3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+2\ge0\)
\(\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{y}{x}-1\right)\left(\dfrac{x}{y}+\dfrac{y}{x}-2\right)\ge0\)
\(\Leftrightarrow\dfrac{\left(x^2+y^2-xy\right)\left(x-y\right)^2}{x^2y^2}\ge0\) (luôn đúng)
\(VT=\dfrac{1}{\left(x-y\right)^2}+\dfrac{x^2+y^2}{x^2y^2}=\dfrac{1}{\left(x-y\right)^2}+\dfrac{\left(x-y\right)^2+2xy}{x^2y^2}\)
\(VT=\dfrac{1}{\left(x-y\right)^2}+\dfrac{\left(x-y\right)^2}{x^2y^2}+\dfrac{2}{xy}\ge2\sqrt{\dfrac{\left(x-y\right)^2}{\left(x-y\right)^2x^2y^2}}+\dfrac{2}{xy}=\dfrac{2}{\left|xy\right|}+\dfrac{2}{xy}\ge\dfrac{2}{xy}+\dfrac{2}{xy}=\dfrac{4}{xy}\)
\(\sqrt{2x\left(y+z\right)}< =\dfrac{2x+y+z}{2}\)
=>\(\dfrac{1}{\sqrt{x\left(y+z\right)}}>=\dfrac{2\sqrt{2}}{2x+y+z}\)
=>\(P>=2\sqrt{2}\left(\dfrac{1}{2x+y+z}+\dfrac{1}{x+2y+z}+\dfrac{1}{x+y+2z}\right)\)
\(\Leftrightarrow P>=2\sqrt{2}\cdot\dfrac{\left(1+1+1\right)^2}{\left(2x+y+z\right)+x+2y+z+x+y+2z}=\dfrac{18\sqrt{2}}{4\cdot18\sqrt{2}}=\dfrac{1}{4}\)
Dấu = xảy ra khi x=y=z=6căn 2
Không mất tính tổng quát, giả sử \(x\ge y\ge z\)
\(y^2-yz+z^2=y^2+\left(z-y\right)y\le y^2\Rightarrow\dfrac{1}{y^2-yz+z^2}\ge\dfrac{1}{y^2}\)
Tương tự: \(\dfrac{1}{z^2-xz+x^2}\ge\dfrac{1}{x^2}\)
\(\Rightarrow P\ge\dfrac{1}{x^2-xy+y^2}+\dfrac{1}{x^2}+\dfrac{1}{y^2}=\dfrac{1}{x^2-xy+y^2}+\dfrac{x^2-xy+y^2}{x^2y^2}+\dfrac{1}{xy}\)
\(P\ge2\sqrt{\dfrac{x^2-xy+y^2}{x^2y^2\left(x^2-xy+y^2\right)}}+\dfrac{1}{xy}=\dfrac{3}{xy}\ge\dfrac{12}{\left(x+y\right)^2}\ge\dfrac{12}{\left(x+y+z\right)^2}=3\)
Dấu "=" xảy ra khi \(\left(x;y;z\right)=\left(1;1;0\right)\) và hoán vị
Lời giải:
Ta có \(\frac{x^2}{y^2}+\frac{y^2}{x^2}+4\geq 3\left(\frac{x}{y}+\frac{y}{x}\right)\)
\(\Leftrightarrow \left(\frac{x}{y}+\frac{y}{x}\right)^2+2\geq 3\left(\frac{x}{y}+\frac{y}{x}\right)\)
\(\Leftrightarrow \left(\frac{x}{y}+\frac{y}{x}\right)^2-3\left(\frac{x}{y}+\frac{y}{x}\right)+2\geq 0\) (1)
Đặt \(\frac{x}{y}+\frac{y}{x}=a\)
\((1)\Leftrightarrow a^2-3a+2\geq 0\)
\(\Leftrightarrow (a-2)(a-1)\geq 0\)\((\star)\)
Ta thấy \(a^2=\left(\frac{x}{y}+\frac{y}{x}\right)^2=\frac{x^2}{y^2}+\frac{y^2}{x^2}+2\)
Áp dụng BĐT AM-GM cho 2 số không âm \(\frac{x^2}{y^2};\frac{y^2}{x^2}\)
\( a^2\geq 2\sqrt{\frac{x^2}{y^2}.\frac{y^2}{x^2}}+2=4\)
\(\Rightarrow a\geq 2\) hoặc \(a\leq -2\)
+TH1: \(a\geq 2\Rightarrow a-2;a-1\geq 0\Rightarrow (a-2)(a-1)\geq 0\), ta thu được \((\star)\)
+TH2: \(a\leq -2\Rightarrow a-2;a-1\leq 0\Rightarrow (a-2)(a-1)\geq 0\), ta thu được \((\star)\)
Vậy bài toán được chứng minh.
BĐT tương đương
\(\dfrac{x^4+y^4+4x^2y^2-3x^3y-3xy^3}{x^2y^2}\ge0\)
\(\Leftrightarrow x^4+y^4-2x^2y^2+6x^2y^2-3x^3y-3xy^3\ge0\)
\(\Leftrightarrow\left(x^2-y^2\right)^2-3xy\left(x^2-2xy+y^2\right)\ge0\)
\(\Leftrightarrow\left[\left(x+y\right)\left(x-y\right)\right]^2-3xy\left(x-y\right)^2\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left[\left(x+y\right)^2-3xy\right]\ge0\)
\(\Leftrightarrow\left(x-y\right)^2\left[\left(a-\dfrac{b}{2}\right)^2+\dfrac{3b^2}{4}\right]\ge0\)
BĐT cuối đúng. Vậy ta có đpcm.
Đẳng thức xảy ra khi a=b