K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

13 tháng 4 2017

\(BDT\Leftrightarrow\dfrac{x^4}{x^2y^2}+\dfrac{y^4}{x^2y^2}+\dfrac{4x^2y^2}{x^2y^2}\ge3\left(\dfrac{x^2}{xy}+\dfrac{y^2}{xy}\right)\)

\(\Leftrightarrow\dfrac{x^4+y^4-2x^2y^2+6x^2y^2}{x^2y^2}\ge\dfrac{3\left(x^2+y^2\right)}{xy}\)

\(\Leftrightarrow\dfrac{x^4+y^4-2x^2y^2}{x^2y^2}\ge\dfrac{3x^2+3y^2}{xy}-\dfrac{6xy}{xy}\)

\(\Leftrightarrow\dfrac{\left(x^2-y^2\right)^2}{x^2y^2}\ge\dfrac{3\left(x^2-2xy+y^2\right)}{xy}=\dfrac{3\left(x-y\right)^2}{xy}\)

\(\Leftrightarrow\left(x-y\right)^2\left[\dfrac{\left(x+y\right)^2-3xy}{x^2y^2}\right]\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(\dfrac{x^2+y^2-xy}{x^2y^2}\right)\ge0\) (luôn đúng)

Vậy BĐT đã được chứng minh

10 tháng 4 2017

\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\ge3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)

\(\Leftrightarrow\dfrac{2x^2}{y^2}+\dfrac{2y^2}{x^2}+8\ge6\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)

\(\Leftrightarrow\left(\dfrac{x^2}{y^2}+2+\dfrac{y^2}{x^2}\right)-4\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+4+\left(\dfrac{x^2}{y^2}-2.\dfrac{x}{y}+1\right)+\left(\dfrac{y^2}{x^2}-2.\dfrac{y}{x}+1\right)\ge0\)\(\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{y}{x}-2\right)^2+\left(\dfrac{x}{y}-1\right)^2+\left(\dfrac{y}{x}-1\right)^2\ge0\) (đúng)

2 tháng 10 2017

cách khác

đặt \(\dfrac{x}{y}+\dfrac{y}{x}=t\Rightarrow\left|t\right|\ge2\)

\(\Leftrightarrow t^2-3t+2\ge0\)

\(\Leftrightarrow\left(t-1\right)\left(t-2\right)\ge0\)

điều này luôn đúng với mọi |t| >=2 => dpcm

kết luận điều kiện đề hơi thừa

cái cần c/m đúng với mọi x,y khác 0

1 tháng 4 2018

\(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\ge3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)

\(\Leftrightarrow2\left(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}+4\right)\ge6\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\)

\(\Leftrightarrow\dfrac{2x^2}{y^2}+\dfrac{2y^2}{x^2}+8\ge\dfrac{6x}{y}+\dfrac{6y}{x}\)

\(\Leftrightarrow\left(\dfrac{x^2}{y^2}+2+\dfrac{y^2}{x^2}\right)-4\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+4+\dfrac{x^2}{y^2}-2.\dfrac{x}{y}+1+\dfrac{y^2}{x^2}-2.\dfrac{y}{x}+1\ge0\)

\(\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2-4.\left(\dfrac{x}{y}+\dfrac{y}{x}\right)+4+\left(\dfrac{x}{y}-1\right)^2+\left(\dfrac{y}{x}-1\right)^2\ge0\)

\(\Leftrightarrow\left(\dfrac{x}{y}+\dfrac{y}{x}-2\right)^2+\left(\dfrac{x}{y}-1\right)^2+\left(\dfrac{y}{x}-1\right)^2\ge0^{\left(1\right)}\)

\(^{\left(1\right)}\)đúng \(\Rightarrowđpcm\)

1 tháng 4 2018

Áp dụng BĐT : x4 + y4 ≥ 2x2y2

=> \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\) ≥ 2 ( x , y > 0 )

TT , \(\dfrac{x}{y}+\dfrac{y}{x}\) ≥ 2 ( x , y > 0 )

Ta có : \(\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\) + 4 ≥ 6 ( 1 )

\(3\left(\dfrac{x}{y}+\dfrac{y}{x}\right)\) ≥ 6 ( 2 )

Từ ( 1 ; 2) => đpcm

NV
19 tháng 1

Đề bài sai, đề đúng thì phân thức đằng sau dấu chia phải là:

\(\dfrac{4x^4+4x^2y+y^2-4}{x^2+y+xy+x}\)

AH
Akai Haruma
Giáo viên
14 tháng 4 2018

Lời giải:

Ta có:

\(\frac{4x^2y^2}{(x^2+y^2)^2}+\frac{x^2}{y^2}+\frac{y^2}{x^2}\geq 3\)

\(\Leftrightarrow \frac{4x^2y^2}{(x^2+y^2)^2}-1+\frac{x^2}{y^2}+\frac{y^2}{x^2}-2\geq 0\)

\(\Leftrightarrow \frac{4x^2y^2-(x^2+y^2)^2}{(x^2+y^2)^2}+\left(\frac{x}{y}-\frac{y}{x}\right)^2\geq 0\)

\(\Leftrightarrow \frac{-(x^2-y^2)^2}{(x^2+y^2)^2}+\frac{(x^2-y^2)^2}{x^2y^2}\geq 0\)

\(\Leftrightarrow (x^2-y^2)^2\left(\frac{1}{x^2y^2}-\frac{1}{(x^2+y^2)^2}\right)\geq 0\)

\(\Leftrightarrow \frac{(x^2-y^2)^2(x^4+y^4+x^2y^2)}{x^2y^2(x^2+y^2)^2}\geq 0\) (luôn đúng)

Do đó ta có đpcm.

Dấu bằng xảy ra khi $x=y$

14 tháng 4 2018

\(A=\dfrac{4x^2y^2}{\left(x^2+y^2\right)^2}+\dfrac{x^2}{y^2}+\dfrac{y^2}{x^2}\)

x,y khác 0

<=>\(A=\dfrac{4}{\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2}+\left(\dfrac{x}{y}\right)^2+\left(\dfrac{y}{x}\right)^2\)

\(A+2=\dfrac{4}{\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2}+\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2=m\)

\(\left(\dfrac{x}{y}+\dfrac{y}{x}\right)^2=t;t\ge4\)

\(m=\dfrac{4}{t}+t\Leftrightarrow t^2-mt+4=0\)

f(t) có nghiệm t>= 4<=>\(\left\{{}\begin{matrix}m^2-16\ge0\\\dfrac{m+\sqrt{m^2-16}}{2}\ge4\end{matrix}\right.\)

\(\left\{{}\begin{matrix}\left|m\right|\ge4\\m^2-16\ge m^2-16m+64\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}\left|m\right|\ge4\\m\ge5\end{matrix}\right.\) \(\Leftrightarrow A+2\ge5;A\ge3=>dpcm\)

24 tháng 6 2017

\(\Leftrightarrow\dfrac{\left(x^2-y^2\right)^2}{x^2y^2}\ge\dfrac{3\left(x-y\right)^2}{xy}\)

\(\Leftrightarrow\dfrac{\left[\left(x-y\right)\left(x+y\right)\right]^2}{x^2y^2}-\dfrac{3\left(x-y\right)^2}{xy}\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(\dfrac{\left(x+y\right)^2}{x^2y^2}-\dfrac{3}{xy}\right)\ge0\)

\(\Leftrightarrow\left(x-y\right)^2\left(\dfrac{x^2+y^2-xy}{x^2y^2}\right)\ge0\)( luôn đúng )

24 tháng 6 2017

copy đét biết nhục

29 tháng 4 2017

x>y\(\ge\)0=>x-y>0 y+1>0

Đặt A=\(x+\dfrac{4}{\left(x-y\right)\left(y+1\right)^2}=\left(x-y\right)+\dfrac{4}{\left(x-y\right)\left(y+1\right)^2}+\left(y+1\right)-1\)

Áp dụng BĐT cô-si cho 2 số dương ta có:

\(\left(x-y\right)+\dfrac{4}{\left(x-y\right)\left(y+1\right)^2}\ge2\sqrt{\dfrac{\left(x-y\right)4}{\left(x-y\right)\left(y+1\right)^2}}=\dfrac{4}{y+1}\)

Dấu "=" xảy ra khi và chỉ khi: (x-y)2(y+1)2=4

<=>(x-y)(y+1)=2(do là các số dương)

=>A\(\ge\dfrac{4}{y+1}+\left(y+1\right)-1\)

Áp dụng cô-si tiếp ta được:

\(\dfrac{4}{y+1}+\left(y+1\right)\ge2\sqrt{\dfrac{4}{y+1}\left(y+1\right)}=4\)

Dấu "=" xảy ra khi và chỉ khi (y+1)2=4 <=>y+1=2<=>y=1

=>A\(\ge4-1=3\)

Dấu "=" xảy ra khi (x-y)(y+1)=2 và y=1

<=>x=2 y=1

6 tháng 5 2017

AM-GM chọn điểm rơi thôi . Có gì hay âu . Nếu hóc búa thì thấy Cô-sy ngược dâu khó nhất

NV
18 tháng 5 2021

\(VT=\dfrac{1}{\left(x-y\right)^2}+\dfrac{x^2+y^2}{x^2y^2}=\dfrac{1}{\left(x-y\right)^2}+\dfrac{\left(x-y\right)^2+2xy}{x^2y^2}\)

\(VT=\dfrac{1}{\left(x-y\right)^2}+\dfrac{\left(x-y\right)^2}{x^2y^2}+\dfrac{2}{xy}\ge2\sqrt{\dfrac{\left(x-y\right)^2}{\left(x-y\right)^2x^2y^2}}+\dfrac{2}{xy}=\dfrac{2}{\left|xy\right|}+\dfrac{2}{xy}\ge\dfrac{2}{xy}+\dfrac{2}{xy}=\dfrac{4}{xy}\)

2 tháng 4 2022

2.

\(4n^3+n+3=4n^3+2n^2+2n-2n^2-n-1+4=2n\left(2n^2+n+1\right)-\left(2n^2+n+1\right)+4\)-Để \(\left(4n^3+n+3\right)⋮\left(2n^2+n+1\right)\) thì \(4⋮\left(2n^2+n+1\right)\)

\(\Leftrightarrow2n^2+n+1\in\left\{1;-1;2;-2;4;-4\right\}\) (do n là số nguyên)

*\(2n^2+n+1=1\Leftrightarrow n\left(2n+1\right)=0\Leftrightarrow n=0\) (loại) hay \(n=\dfrac{-1}{2}\) (loại)

*\(2n^2+n+1=-1\Leftrightarrow2n^2+n+2=0\) (phương trình vô nghiệm)

\(2n^2+n+1=2\Leftrightarrow2n^2+n-1=0\Leftrightarrow n^2+n+n^2-1=0\Leftrightarrow n\left(n+1\right)+\left(n+1\right)\left(n-1\right)=0\Leftrightarrow\left(n+1\right)\left(2n-1\right)=0\)

\(\Leftrightarrow n=-1\) (loại) hay \(n=\dfrac{1}{2}\) (loại)

\(2n^2+n+1=-2\Leftrightarrow2n^2+n+3=0\) (phương trình vô nghiệm)

\(2n^2+n+1=4\Leftrightarrow2n^2+n-3=0\Leftrightarrow2n^2-2n+3n-3=0\Leftrightarrow2n\left(n-1\right)+3\left(n-1\right)=0\Leftrightarrow\left(n-1\right)\left(2n+3\right)=0\)\(\Leftrightarrow n=1\left(nhận\right)\) hay \(n=\dfrac{-3}{2}\left(loại\right)\)

-Vậy \(n=1\)

 

 

2 tháng 4 2022

1. \(x^2+y^2=z^2\)

\(\Rightarrow x^2+y^2-z^2=0\)

\(\Rightarrow\left(x-z\right)\left(x+z\right)+y^2=0\)

-TH1: y lẻ \(\Rightarrow x-z;x+z\) đều lẻ.

\(x+3z-y=x+z-y+2x\) chia hết cho 2. \(\Rightarrow\)Hợp số.

-TH2: y chẵn \(\Rightarrow\)1 trong hai biểu thức \(x-z;x+z\) chia hết cho 2.

*Xét \(\left(x-z\right)⋮2\):

\(x+3z-y=x-z+4z-y\) chia hết cho 2. \(\Rightarrow\)Hợp số.

*Xét \(\left(x+z\right)⋮2\):

\(x+3z-y=x+z+2z-y\) chia hết cho 2 \(\Rightarrow\)Hợp số.