M = 512-512/2-512/2^2-512/2^3-.....-512/2^10
tinh M
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(M=512-\frac{512}{2}-\frac{512}{2^2}-\frac{512}{2^3}-...-\frac{512}{2^{10}}\)
\(M=512-\frac{512}{2}-\frac{512}{4}-\frac{512}{8}-...-\frac{512}{1024}\)
\(M=\frac{1024}{2}-\frac{512}{2}-\frac{256}{2}-\frac{128}{2}-...-\frac{1}{2}\)
\(M=\frac{1024}{2}-\left(\frac{512}{2}+\frac{256}{2}+\frac{128}{2}+\frac{64}{2}+...+\frac{1}{2}\right)\)
\(M=\frac{1024}{2}-\frac{1023}{2}\)
\(M=\frac{1}{2}\)
\(M=0,5\)
\(M=512-\frac{512}{2^2}-....-\frac{512}{2^{10}}\)
\(=2^9-\frac{2^9}{2}-.....-\frac{2^9}{10}\)
\(=2^9-2^8-....-\frac{1}{2}\)
\(2M=2^{10}-2^9-....-1\)
\(M=\left(2^{10}-...-1\right)-2^9+2^8+....+1+\frac{1}{2}\)
\(M=2^{10}-2.2^9+\frac{1}{2}\)
\(M=\frac{1}{2}\)
\(\Rightarrow\frac{M}{512}=1-\frac{1}{2}-\frac{1}{2^2}-.....-\frac{1}{2^{10}}\)
\(\Rightarrow2.\left(\frac{M}{512}\right)=2-1-\frac{1}{2}-.....-\frac{1}{2^9}\)
\(\Rightarrow2.\left(\frac{M}{512}\right)-\frac{M}{512}=\left(2-1-\frac{1}{2}-.....-\frac{1}{2^9}\right)-\left(1-\frac{1}{2}-\frac{1}{2^2}-.....-\frac{1}{2^{10}}\right)\)
\(\Rightarrow\frac{M}{512}=-\frac{1}{2^{10}}\)
\(\Rightarrow M=-\frac{1}{2}\)
M= 512 - \(\frac{512}{2}-\frac{512}{2^2}-\frac{512}{2^3}-...-\frac{512}{2^{10}}\)
=> 2.M = 1024 - 512 - \(\frac{512}{2}-\frac{512}{2^2}-\frac{512}{2^3}-...-\frac{512}{2^9}\)
=> 2.M - M = 1024 - 512 - 512 + \(\frac{512}{2^{10}}\)
=> M = \(\frac{512}{2^{10}}=\frac{2^9}{2^{10}}=\frac{1}{2}\)
M = \(512-\frac{512}{2}-\frac{512}{2^2}-\frac{512}{2^3}-.....-\frac{512}{2^{10}}\)
M = \(512-512.\left(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\right)\)
Đặt A = \(\frac{1}{2}+\frac{1}{2^2}+\frac{1}{2^3}+...+\frac{1}{2^{10}}\)
2A = \(1+\frac{1}{2}+\frac{1}{2^2}+....+\frac{1}{2^{11}}\)
A = 2A - A = \(1-\frac{1}{2^{10}}\)
=> M = \(512-512.\left(1-\frac{1}{2^{10}}\right)\)
=> M = 512.\(\left(1-1+\frac{1}{2^{10}}\right)\)
=> M = \(512.\frac{1}{2^{10}}\)
=> M = \(\frac{512}{2^{10}}\)
Ta có:
\(P=512-\frac{512}{2}-\frac{512}{2^2}-\frac{512}{2^3}-...-\frac{512}{2^{10}}\)
\(\Rightarrow P=512-\left(\frac{512}{2}+\frac{512}{2^2}+\frac{512}{2^3}+...+\frac{512}{2^{10}}\right)\)
Đặt \(A=\frac{512}{2}+\frac{512}{2^2}+\frac{512}{2^3}+...+\frac{512}{2^{10}}\)
\(\Rightarrow2A=512+\frac{512}{2}+\frac{512}{2^2}+...+\frac{512}{2^9}\)
\(\Rightarrow2A-A=512-\frac{512}{2^{10}}\)
\(\Rightarrow A=512-\frac{512}{2^{10}}\)
\(\Rightarrow P=512-A=512-\left(512-\frac{512}{2^{10}}\right)=\frac{512}{2^{10}}=\frac{1}{2}\)
\(P=512-\frac{512}{2}-\frac{512}{2^2}-\frac{512}{2^3}-...-\frac{512}{2^{10}}\)
\(\Rightarrow P=2^9-\frac{2^9}{2}-\frac{2^9}{2^2}-\frac{2^9}{2^3}-...-\frac{2^9}{2^{10}}\)
\(\Rightarrow P=2^9-2^8-2^7-2^6-...-\frac{1}{2}\)
\(\Rightarrow2P=2^{10}-2^9-2^8-2^7-...-1\)
\(\Rightarrow2P-P=2^{10}-2^9-2^8-2^7-...-1-\left(2^9-2^8-2^7-2^6-...-\frac{1}{2}\right)\)
\(\Rightarrow2P-P=2^{10}-2^9-2^8-2^7-...-1-2^9+2^8+2^7+2^6+...+\frac{1}{2}\)
\(\Rightarrow P=2^{10}-2^9-2^9+\frac{1}{2}\)
\(\Rightarrow P=2^{10}-2.2^9+\frac{1}{2}\)
\(\Rightarrow P=2^{10}-2^{10}+\frac{1}{2}\)
\(\Rightarrow P=0+\frac{1}{2}\)
\(\Rightarrow P=\frac{1}{2}.\)
Chúc bạn học tốt!