giúp em giải hệ 4 phương trình này với ạ ! GIẢI CHI TIẾT NHÁ !!! THANKS
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
(2 - 3x)(x + 8) = (3x - 2)(3 - 5x)
⇔ (2 - 3x)(x + 8) - (3x - 2)(3 - 5x) = 0
⇔ (2 - 3x)(x + 8) + (2 - 3x)(3 - 5x) = 0
⇔ (2 - 3x)(x + 8 + 3 - 5x) = 0
⇔ (2 - 3x)(11 - 4x) = 0
⇔ 2 - 3x = 0 hay 11 - 4x = 0
⇔ 2 = 3x hay 11 = 4x
⇔ x = \(\dfrac{2}{3}\) hay x = \(\dfrac{11}{4}\)
Vậy tập nghiệm của pt S = \(\left\{\dfrac{2}{3};\dfrac{11}{4}\right\}\)
<=> (2-3x ) (x+8) + (2-3x ) (3-5x)=0
<=> (2-3x ) ( x+8 + 3-5x ) =0
<=> (2-3x ) ( 11 - 4x ) = 0
=> 2-3x =0 hoặc 11-4x =0
3x = 2 4x =11
x = 2/3 x = 11/4
Có : G - T = 140 nu
2T + 3G = 2520
=> A = T = 420 nu
G = X = 560 nu
N = 2 ( A + G ) = 1960 nu
l = N x 3,4 : 2 = 3332Ao
Ta có: \(G-T=140\)
\(2T+3G=2520\)
\(\Rightarrow\left\{{}\begin{matrix}A=T=420nu\\G=X=560nu\end{matrix}\right.\)
\(N=2A+2G=2\cdot420+2\cdot560=1960nu\)
\(l=\dfrac{2N}{3,4}=\dfrac{2\cdot1960}{3,4}=1152,94A^o\)
\(\frac{3-x+x}{3-x}=\frac{5x\left(x+2\right)+2\left(x+2\right)\left(3-x\right)}{\left(x+2\right)^2\left(3-x\right)}\)
\(\frac{3}{3-x}=\frac{\left(5x+2\left(3-x\right)\right)\left(x+2\right)}{\left(x+2\right)^2\left(3-x\right)}\)
\(\frac{3}{3-x}=\frac{5x+2\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}\)
\(\frac{3}{3-x}=\frac{5x}{\left(x+2\right)\left(3-x\right)}+2\)
\(\frac{3}{3-x}-2=\frac{5x}{\left(x+2\right)\left(3-x\right)}\)
\(\frac{3-2\left(3-x\right)}{\left(x+2\right)\left(3-x\right)}=\frac{5x}{\left(x+2\right)\left(3-x\right)}\)
\(3-2X\left(3-x\right)=5x\)
\(3-6+2x=5x\)
chị có thể tự giải tiếp ạ
e là hs lớp 7
cảm ơn e "dang long vu'' chị làm xong thấy cái j nó sai sai nhưng k biết sai chỗ nào nên muốn dò lại bài thôi cảm ơn e nha
ĐK: \(x\ge0\)
Dễ thấy \(1-\sqrt{2\left(x^2-x+1\right)}\le1-\sqrt{2}< 0\)
Khi đó bất phương trình tương đương:
\(x-\sqrt{x}\le1-\sqrt{2\left(x^2-x+1\right)}\)
\(\Leftrightarrow\sqrt{x}-\dfrac{1}{\sqrt{x}}-1+\sqrt{2\left(x+\dfrac{1}{x}-1\right)}\le0\)
\(\Leftrightarrow\sqrt{x}-\dfrac{1}{\sqrt{x}}-1+\sqrt{2\left(\sqrt{x}-\dfrac{1}{\sqrt{x}}\right)^2+2}\le0\)
\(\Leftrightarrow t-1+\sqrt{2t^2+2}\le0\)
Để giải hệ phương trình {x−5y=−24, x=3y}, ta có thể sử dụng các bước sau:
Chuyển đổi hệ phương trình thứ hai thành dạng x = 3y: x = 3y
Dùng hệ phương trình thứ hai để thay thế x trong hệ phương trình thứ nhất: x−5y=−24 => 3y-5y = -24 => -2y = -24 => y = 12
Dùng hệ phương trình thứ hai và giá trị y đã tìm được để tìm giá trị x: x = 3y => x = 3(12) => x = 36
Vậy, giải của hệ phương trình là (x, y) = (36, 12)
\(\left\{{}\begin{matrix}x-5y=-24\\x=3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}3y-5y=-24\\x=3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-2y=-24\\x=3y\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}y=12\\x=36\end{matrix}\right.\)
ĐKXĐ: \(x\ge1\)
Đặt \(\left\{{}\begin{matrix}\sqrt[]{x-1}=a\ge0\\\sqrt[3]{2-x}=b\end{matrix}\right.\) \(\Rightarrow a^2+b^3=1\)
Ta được hệ:
\(\left\{{}\begin{matrix}a+b=1\\a^2+b^3=1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}b=1-a\\a^2+b^3=1\end{matrix}\right.\)
\(\Rightarrow a^2+\left(1-a\right)^3=1\)
\(\Leftrightarrow a^3-4a^2+3a=0\)
\(\Leftrightarrow a\left(a-1\right)\left(a-3\right)=0\)
\(\Rightarrow\left[{}\begin{matrix}a=0\\a=1\\a=3\end{matrix}\right.\) \(\Rightarrow\left[{}\begin{matrix}\sqrt[]{x-1}=0\\\sqrt[]{x-1}=1\\\sqrt[]{x-1}=3\end{matrix}\right.\)
\(\Rightarrow\left[{}\begin{matrix}x=1\\x=2\\x=10\end{matrix}\right.\)
\(\left\{{}\begin{matrix}6u_2+u_5=1\\3u_3+2u_4=-1\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}6u_1.q+u_1.q^4=1\\3u_1.q^2+2u_1.q^3=-1\end{matrix}\right.\)
\(\Rightarrow u_1\left(6q+q^4+3q^2+2q^3\right)=0\)
\(\Leftrightarrow q^3+2q^2+3q+6=0\)
\(\Leftrightarrow\left(q+2\right)\left(q^2+3\right)=0\)
\(\Leftrightarrow q=-\text{}2\)
\(\Rightarrow u_1=\dfrac{1}{4}\)
\(\Rightarrow u_n=u_1.q^{n-1}=\dfrac{1}{4}.\left(-2\right)^{n-1}=\left(-2\right)^{n-3}\)
k có điều kiện à :> đắng thật
@@ tại đang tìm hiểu về phương pháp hệ số bất định đến đoạn đó ko hiểu tính a b c d kiểu gì !!! Đây là hình của bài hoàn chỉnh ạ !! Với lại cái chỗ khoanh đỏ là cái em đang không biết !!!