A= 2x + 2013y/ x- 2y biết x>2y > 0 và x^2 + 3y^2 = 4xy
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
con A bn bấm nhầm đúng ko mik sửa lại nhé
A= 20142 - 4018. 1014 + 10142
= (2014 - 1014)2
= 10002
= 1000000
B= 9x2 - 6x + 2013
= 9x2 - 6x + 1 + 2012
= (3x - 1)2 + 2012
thay x = \(\dfrac{200001}{3}\)vào biểu thức B ta có:
B = (3.\(\dfrac{200001}{3}\)- 1)2 + 2012
= (200001 - 1)2 + 2012
= 2000002 + 2012
= 40000002012
mik chỉ làm đc đến đây thôi nhưng mong bn ủng hộ!
a \(=9x^2-6x+1+2012\)
\(=\left(3x-1\right)^2+2012\)
\(=200000^2+2012\)
b: \(=2014^2-2\cdot2014\cdot1014+1014^2\)
\(=\left(2014-1014\right)^2=1000^2=10^6\)
c: \(x^2+3y^2=4xy\)
=>x^2-4xy+3y^2=0
=>(x-y)*(x-3y)=0
=>x=y hoặc x=3y
KHi x=y thì \(C=\dfrac{2x+2013x}{x-2x}=-2015\)
Khi x=3y thì \(C=\dfrac{6y+2013y}{3y-2y}=2019\)
\(x\left(x+5\right)=9x\)
\(\Leftrightarrow xx+5x=9x\)
\(\Leftrightarrow xx+5x-9x=0\)
\(\Leftrightarrow xx-4x=0\)
\(\Leftrightarrow x\left(x-4\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)
Vậy \(x=0\) hoặc \(x=4\)
Bài 1:
a) (2x - y) + (2x - y) + (2x - y) + 3y
= 3(2x - y) + 3y
= 3(2x - y + 3y)
= 3(2x + 2y)
= 3.2(x + y)
= 6(x + y)
b) (x + 2y) + (x - 2y) + (8x - 3y)
= x + 2y + x - 2y + 8x - 3y
= 9x - 3y
= 3(3x - y)
c) (x + 2y) - 2(x - 2y) - (2x - 3y)
= x + 2y - 2x + 4y - 2x + 3y
= 9y - 3x
= 3(3y - x)
Bài 2:
M + 2(x2 - 4y2) + Q = 6x2 - 4xy + 5y2 + P
M + 2x2 - 8y2 -3x2 + 7xy - 2y2 = 6x2 - 4xy + 5y2 + 9x2 - 6xy + 3y2
M + 2x2 - 3x2 - 6x2 - 9x2 - 8y2 - 2y2 - 5y2 - 3y2 + 7xy + 4xy + 6xy = 0
M - 16x2 - 18y2 + 17xy = 0
M = 16x2 + 18y2 - 17xy
a) x2+y2-4x+4y+8=0
⇔ (x-2)2+(y+2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-2=0\\y+2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=2\\y=-2\end{matrix}\right.\)
b)5x2-4xy+y2=0
⇔ x2+(2x-y)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x=0\\2x-y=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
c)x2+2y2+z2-2xy-2y-4z+5=0
⇔ (x-y)2+(y-1)2+(z-2)2=0
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=0\\y-1=0\\z-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y=1\\z=2\end{matrix}\right.\)
b: Ta có: \(5x^2-4xy+y^2=0\)
\(\Leftrightarrow x^2-\dfrac{4}{5}xy+y^2=0\)
\(\Leftrightarrow x^2-2\cdot x\cdot\dfrac{2}{5}y+\dfrac{4}{25}y^2+\dfrac{21}{25}y^2=0\)
\(\Leftrightarrow\left(x-\dfrac{2}{5}y\right)^2+\dfrac{21}{25}y^2=0\)
Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
x/y+3.y/x=4
đặt b=y/x<1
1/b+3b=4
3b^2-4b+1=0
b=1loia
b=1/3
(2+5b)/(1-2.b)
\(P=\frac{2+5.\frac{1}{3}}{1-2.\frac{1}{3}}=\frac{\frac{11}{3}}{\frac{1}{3}}=11\)
a) Thay \(x=2,y=\frac{1}{2}\), ta được \(B=2^2-4.2.\frac{1}{2}+4.\left(\frac{1}{2}\right)^2=4-4+1=1\)
b) Thay \(x=1,\left|y\right|=2.5\Leftrightarrow x=1,y=2,5\), ta được \(B=1^2-4.1.2,5+4.\left(2,5\right)^2=1-10+25=16\)
c) Thay \(2x=3y,x+2y=-7\Leftrightarrow\left\{{}\begin{matrix}2x-3y=0\\x+2y=-7\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-3\\y=-2\end{matrix}\right.\), ta được \(B=\left(-3\right)^2-4\left(-3\right)\left(-2\right)+4\left(-2\right)^2=9-24+16=1\)
d) Thay $x=2y$, ta được \(B=\left(2y\right)^2-4\left(2y\right)y+4y^2=4y^2-8y^2+4y^2=0\)
B=x2-4xy+4.y2.
B=(x2-2xy)+4y2-2xy.
B=x(x-2y)+2y(2y-x)
B=x(x-2y)-2y(2y-x)=(x-2y)2.
a)Thay x=2;y=1/2, ta được:
B=(2-1)2=1
b)TH1:y=2,5
B=(x-2y)2=(1-2.2,5)2=(-4)2=16.
TH2:y=-2,5
B=(x-2y)2=(1+2,5.2)2=62=36
Vậy B=16 hoặc 36.
c)x=\(\frac{3}{2}\)y ⇒y(\(\frac{3}{2}\)+2)=-7
y.\(\frac{7}{2}\)=-7⇒y=-2
x=(-2).\(\frac{3}{2}\)=-3
B=[-3-2.(-2)]2=12=1
d)B=(x-2y)2=02=0.
\(x^2+3y^2=4xy\)
\(\Leftrightarrow x^2-4xy+3y^2=0\)
=>(x-y)(x-3y)=0
=>x=y hoặc x=3y
Khi x=y thì \(A=\dfrac{2\cdot y+2013y}{y-2y}=-2015\)
Khi x=3y thì \(A=\dfrac{2\cdot3y+2013y}{3y-2y}=2019\)