K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 10 2017

Dễ thấy \(x>0\)

Ta có:

\(\left\{{}\begin{matrix}3\sqrt[3]{108x^3+12x}=3\sqrt[3]{2.6x.\left(9x^2+1\right)}\le9x^2+6x+3\\81x^4+5=81x^4+1+4\ge18x^2+4\end{matrix}\right.\)

\(\Rightarrow18x^2+4\le9x^2+6x+3\)

\(\Leftrightarrow9x^2-6x+1\le0\)

\(\Leftrightarrow\left(3x-1\right)^2\le0\)

Dấu = xảy ra khi \(x=\dfrac{1}{3}\)

6 tháng 9 2017

Điều kiện: \(108x^3+12x\ge0\)

\(\Leftrightarrow x\ge0\)

Đặt \(3x=a\ge0\) thì ta có:

\(a^4+5=3\sqrt[3]{4a^3+4a}\)

\(\Leftrightarrow a^4-1=3\left(\sqrt[3]{4a^3+4a}-2\right)\)

\(\Leftrightarrow\left(a-1\right)\left(a+1\right)\left(a^2+1\right)=\dfrac{12\left(a^3+a-2\right)}{\sqrt[3]{\left(4a^2+4a\right)^2}+2\sqrt[3]{\left(4a^2+4a\right)}+4}\)

\(\Leftrightarrow\left(a-1\right)\left(a+1\right)\left(a^2+1\right)-\dfrac{12\left(a-1\right)\left(a^2+a+2\right)}{\sqrt[3]{\left(4a^2+4a\right)^2}+2\sqrt[3]{\left(4a^2+4a\right)}+4}=0\)

\(\Leftrightarrow\left(a-1\right)\left(\left(a+1\right)\left(a^2+1\right)-\dfrac{12\left(a^2+a+2\right)}{\sqrt[3]{\left(4a^2+4a\right)^2}+2\sqrt[3]{\left(4a^2+4a\right)}+4}\right)=0\)

\(\Leftrightarrow a=1\)

\(\Rightarrow3x=1\)

\(\Leftrightarrow x=\dfrac{1}{3}\)

6 tháng 9 2017

sao ko liên hợp luôn cho chất .-.

18 tháng 11 2021

a, ĐKXĐ: \(x\ge-\dfrac{1}{3}\)

\(\Leftrightarrow\dfrac{3}{2}.2\sqrt{1+3x}-\dfrac{5}{3}.3\sqrt{1+3x}-\dfrac{1}{4}.4\sqrt{1+3x}=1\\ \Leftrightarrow3\sqrt{1+3x}-5\sqrt{1+3x}-\sqrt{1+3x}=1\\ \Leftrightarrow-3\sqrt{1+3x}=1\\ \Leftrightarrow\sqrt{1+3x}=-\dfrac{1}{3}\left(vô.lí\right)\)

b, \(\Leftrightarrow\sqrt{\left(x-\dfrac{1}{2}\right)^2}=3\\ \Leftrightarrow\left|x-\dfrac{1}{2}\right|=3\\ \Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=3\\x-\dfrac{1}{2}=-3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)

18 tháng 11 2021

a) ĐKXĐ: \(x\ge-\dfrac{1}{3}\)

\(pt\Leftrightarrow3\sqrt{3x+1}-5\sqrt{3x+1}-\sqrt{3x+1}=1\)

\(\Leftrightarrow-3\sqrt{3x+1}=1\Leftrightarrow\sqrt{3x+1}=-\dfrac{1}{3}\left(VLý\right)\)

Vậy \(S=\varnothing\)

b) \(pt\Leftrightarrow\sqrt{\left(x-\dfrac{1}{2}\right)^2}=3\Leftrightarrow\left|x-\dfrac{1}{2}\right|=3\)

\(\Leftrightarrow\left[{}\begin{matrix}x-\dfrac{1}{2}=3\\x-\dfrac{1}{2}=-3\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{7}{2}\\x=-\dfrac{5}{2}\end{matrix}\right.\)

15 tháng 10 2021

\(PT\Leftrightarrow\left|3x-2\right|=8\Leftrightarrow\left[{}\begin{matrix}3x-2=8\\2-3x=8\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{10}{3}\\x=-2\end{matrix}\right.\)

15 tháng 10 2021

\(\Leftrightarrow\sqrt{\left(3x-2\right)^2}=8\)

\(\Leftrightarrow\left|3x-2\right|=8\)

\(\Leftrightarrow\left[{}\begin{matrix}3x-2=8\\3x-2=-8\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{10}{3}\\x=-2\end{matrix}\right.\)

25 tháng 11 2023

2: ĐKXĐ: x>=0

\(\sqrt{3x}-2\sqrt{12x}+\dfrac{1}{3}\cdot\sqrt{27x}=-4\)

=>\(\sqrt{3x}-2\cdot2\sqrt{3x}+\dfrac{1}{3}\cdot3\sqrt{3x}=-4\)

=>\(\sqrt{3x}-4\sqrt{3x}+\sqrt{3x}=-4\)

=>\(-2\sqrt{3x}=-4\)

=>\(\sqrt{3x}=2\)

=>3x=4

=>\(x=\dfrac{4}{3}\left(nhận\right)\)

3: 

ĐKXĐ: x>=0

\(3\sqrt{2x}+5\sqrt{8x}-20-\sqrt{18}=0\)

=>\(3\sqrt{2x}+5\cdot2\sqrt{2x}-20-3\sqrt{2}=0\)

=>\(13\sqrt{2x}=20+3\sqrt{2}\)

=>\(\sqrt{2x}=\dfrac{20+3\sqrt{2}}{13}\)

=>\(2x=\dfrac{418+120\sqrt{2}}{169}\)

=>\(x=\dfrac{209+60\sqrt{2}}{169}\left(nhận\right)\)

4: ĐKXĐ: x>=-1

\(\sqrt{16x+16}-\sqrt{9x+9}=1\)

=>\(4\sqrt{x+1}-3\sqrt{x+1}=1\)

=>\(\sqrt{x+1}=1\)

=>x+1=1

=>x=0(nhận)

5: ĐKXĐ: x<=1/3

\(\sqrt{4\left(1-3x\right)}+\sqrt{9\left(1-3x\right)}=10\)

=>\(2\sqrt{1-3x}+3\sqrt{1-3x}=10\)

=>\(5\sqrt{1-3x}=10\)

=>\(\sqrt{1-3x}=2\)

=>1-3x=4

=>3x=1-4=-3

=>x=-3/3=-1(nhận)

6: ĐKXĐ: x>=3

\(\dfrac{2}{3}\sqrt{x-3}+\dfrac{1}{6}\sqrt{x-3}-\sqrt{x-3}=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}\cdot\left(\dfrac{2}{3}+\dfrac{1}{6}-1\right)=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}\cdot\dfrac{-1}{6}=-\dfrac{2}{3}\)

=>\(\sqrt{x-3}=\dfrac{2}{3}:\dfrac{1}{6}=\dfrac{2}{3}\cdot6=\dfrac{12}{3}=4\)

=>x-3=16

=>x=19(nhận)

30 tháng 3 2019

\(\left(2x+3\right)\left(x^2-\sqrt{12x+5}\right)=0\)

7 tháng 8 2019

\(27x^2+42x+6=3\sqrt{81x^4+4}\)

\(\Leftrightarrow9\left(9x^2+14x+2\right)^2=9\left(81x^4+4\right)\)

\(\Leftrightarrow\left(9x^2+14x+2\right)^2-81x^4-4=0\)

\(\Leftrightarrow x=0\)

a) ĐKXĐ: \(x\ge0\)

Ta có: \(3\sqrt{18x}-5\sqrt{8x}+4\sqrt{50x}=38\)

\(\Leftrightarrow9\sqrt{2x}-10\sqrt{2x}+20\sqrt{2x}=38\)

\(\Leftrightarrow19\sqrt{2x}=38\)

\(\Leftrightarrow\sqrt{2x}=2\)

\(\Leftrightarrow2x=4\)

hay x=2(thỏa ĐK)

b) ĐKXĐ: \(x\ge0\)

Ta có: \(3\sqrt{12x}-2\sqrt{27x}+4\sqrt{3x}=8\)

\(\Leftrightarrow6\sqrt{3x}-6\sqrt{3x}+4\sqrt{3x}=8\)

\(\Leftrightarrow\sqrt{3x}=2\)

\(\Leftrightarrow3x=4\)

hay \(x=\dfrac{4}{3}\)

c) ĐKXĐ: \(x\ge5\)

Ta có: \(\sqrt{4x-20}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9x-45}=4\)

\(\Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\dfrac{1}{3}\cdot3\sqrt{x-5}=4\)

\(\Leftrightarrow2\sqrt{x-5}=4\)

\(\Leftrightarrow\sqrt{x-5}=2\)

\(\Leftrightarrow x-5=4\)

hay x=9

2 tháng 7 2021

a)

\(3.3\sqrt{2x}-5.2\sqrt{2x}+4.5.\sqrt{2x}=38\\ \Leftrightarrow19\sqrt{2x}=38\\ \Leftrightarrow\sqrt{2x}=2\\ \Leftrightarrow x=2\)

b)

\(3.2.\sqrt{3x}-2.3.\sqrt{3x}+4.\sqrt{3x}=8\\ \Leftrightarrow4\sqrt{3x}=8\\ \Leftrightarrow\sqrt{3x}=2\\\Leftrightarrow x=\dfrac{2^2}{3}=\dfrac{4}{3} \)

c)

\(\sqrt{4\left(x-5\right)}+\sqrt{x-5}-\dfrac{1}{3}\sqrt{9\left(x-5\right)}=4\\ \Leftrightarrow2\sqrt{x-5}+\sqrt{x-5}-\sqrt{x-5}=4\\ \Leftrightarrow2\sqrt{x-5}=4\\ \Leftrightarrow x-5=4\\ \Leftrightarrow x=9\)

23 tháng 9 2017

pt<=>\(\sqrt{\left(x+6\right)^3}+\sqrt{x+6}=\left(x^2+4x\right)^3+x^2+4x\)

đặt\(\sqrt{x+6}=a;x^2+4x=b\)