x+2y+z=0 cmr x^3+8y^3+z^3=6xyz
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(P=x+y+z+\frac{3}{4x}+\frac{9}{8y}+\frac{1}{z}\)
\(=\frac{3}{4}x+\frac{3}{4x}+\frac{1}{2}y+\frac{9}{8y}+\frac{1}{4}z+\frac{1}{z}+\frac{1}{4}x+\frac{1}{2}y+\frac{3}{4}z\)
\(\ge\frac{3}{2}\sqrt{x.\frac{1}{x}}+2\sqrt{\frac{1}{2}y.\frac{9}{8y}}+2\sqrt{\frac{1}{4}z.\frac{1}{z}}+\frac{1}{4}.10\)
\(=\frac{3}{2}+\frac{3}{2}+1+\frac{5}{2}=6,5\)
Dấu \(=\)khi \(\hept{\begin{cases}x=1\\y=1,5\\z=2\end{cases}}\).
a) 5x2 + 10y2 - 6xy - 4x - 2y + 3
= ( x2 - 6xy + 9y2 ) + ( 4x2 - 4x + 1 ) + ( y2 - 2y + 1 ) + 1
= ( x - 3y )2 + ( 2x - 1 )2 + ( y - 1 )2 + 1
Ta có : \(\hept{\begin{cases}\left(x-3y\right)^2\\\left(2x-1\right)^2\\\left(y-1\right)^2\end{cases}}\ge0\forall x,y\Rightarrow\left(x-3y\right)^2+\left(2x-1\right)^2+\left(y-1\right)^2+1\ge1>0\forall x,y\)
=> đpcm
b) x2 + 4y2 + z2 - 2x - 6z + 8y + 15 = 0 < Sửa -z2 -> +z2 )
= ( x2 - 2x + 1 ) + ( 4y2 + 8y + 4 ) + ( z2 - 6z + 9 ) + 1
= ( x - 1 )2 + 4( y2 + 2y + 1 ) + ( z - 3 )2 + 1
= ( x - 1 )2 + 4( y + 1 )2 + ( z - 3 )2 + 1
Ta có : \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\4\left(y+1\right)^2\ge0\forall y\\\left(z-3\right)^2\ge0\forall z\end{cases}}\Rightarrow\left(x-1\right)^2+4\left(y+1\right)^2+\left(z-3\right)^2+1\ge1>0\forall x,y,z\)
=> đpcm
Câu hỏi của Minh Hà Tuấn - Toán lớp 9 - Học toán với OnlineMath
\(xy+xz+yz=6xyz\Rightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=6\)
Đặt \(\left\{{}\begin{matrix}\frac{1}{x}=a\\\frac{1}{y}=b\\\frac{1}{z}=c\end{matrix}\right.\) \(\Rightarrow a+b+c=6\)
\(T=\sum x\sqrt{\frac{x}{1+x^3}}=\sum\sqrt{\frac{x^3}{1+x^3}}=\sum\sqrt{\frac{1}{1+\frac{1}{x^3}}}=\sum\frac{1}{\sqrt{1+a^3}}=\sum\frac{1}{\sqrt{\left(a+1\right)\left(a^2-a+1\right)}}\)
\(\Rightarrow T\ge\sum\frac{2}{a+1+a^2-a+1}=\sum\frac{2}{a^2+2}\)
Ta có đánh giá: \(\frac{2}{a^2+2}\ge\frac{7-2a}{9}\) với mọi \(0< a< 6\)
Thật vậy, \(\frac{2}{a^2+2}\ge\frac{7-2a}{9}\Leftrightarrow18-\left(a^2+2\right)\left(7-2a\right)\ge0\)
\(\Leftrightarrow2a^3-7a^2+4a+4\ge0\)
\(\Leftrightarrow\left(a-2\right)^2\left(2a+1\right)\ge0\) luôn đúng với mọi \(0< a< 6\)
Tương tự ta có: \(\frac{2}{b^2+2}\ge\frac{7-2b}{9}\) ; \(\frac{2}{c^2+2}\ge\frac{7-2c}{9}\)
\(\Rightarrow T\ge\frac{21-2\left(a+b+c\right)}{9}=\frac{21-12}{9}=1\)
\(\Rightarrow T_{min}=1\) khi \(a=b=c=2\) hay \(x=y=z=\frac{1}{2}\)
\(\dfrac{x^3}{2y+1}+\dfrac{2y+1}{9}+\dfrac{1}{3}\ge3\sqrt[3]{\dfrac{x^3\left(2y+1\right)}{27\left(2y+1\right)}}=x\)
Tương tự: \(\dfrac{y^3}{2z+1}+\dfrac{2z+1}{9}+\dfrac{1}{3}\ge y\) ; \(\dfrac{z^3}{2x+1}+\dfrac{2x+1}{9}+\dfrac{1}{3}\ge z\)
Cộng vế:
\(VT+\dfrac{2\left(x+y+z\right)+3}{9}+1\ge x+y+z\)
\(\Rightarrow VT\ge\dfrac{7}{9}\left(x+y+z\right)-\dfrac{4}{3}\ge\dfrac{7}{9}.3\sqrt[3]{xyz}-\dfrac{4}{3}=1\) (đpcm)
Dấu "=" xảy ra khi \(x=y=z=1\)
Đặt \(x=a;2y=b;z=c\)
\(A=\left(a+b-c\right)^3-a^3-b^3+c^3\)
\(A=\left[a+\left(b-c\right)\right]^3-a^3-b^3+c^3\)
\(A=a^3+3a\left(b-c\right)\left(a+b-c\right)+\left(b-c\right)^3-a^3-b^3+c^3\)
\(A=a^3-3a\left(b-c\right)\left(a+b-c\right)+b^3+3bc\left(b-c\right)-c^3-a^3-b^3+c^3\)
\(A=3\left(b-c\right)\left(a^2+ab-ac+bc\right)\)
\(A=3\left(b-c\right)\left(a+b\right)\left(a-c\right)\)
Khi đó ta có:
\(A=3\left(x-z\right)\left(x+2y\right)\left(2y-z\right)\)
Bạn tham khảo tại đây:
Câu hỏi của Nguyễn Công Minh Hoàng - Toán lớp 8 - Học toán với OnlineMath
giúppppppp ahhhhhh