Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(x=a;2y=b;z=c\)
\(A=\left(a+b-c\right)^3-a^3-b^3+c^3\)
\(A=\left[a+\left(b-c\right)\right]^3-a^3-b^3+c^3\)
\(A=a^3+3a\left(b-c\right)\left(a+b-c\right)+\left(b-c\right)^3-a^3-b^3+c^3\)
\(A=a^3-3a\left(b-c\right)\left(a+b-c\right)+b^3+3bc\left(b-c\right)-c^3-a^3-b^3+c^3\)
\(A=3\left(b-c\right)\left(a^2+ab-ac+bc\right)\)
\(A=3\left(b-c\right)\left(a+b\right)\left(a-c\right)\)
Khi đó ta có:
\(A=3\left(x-z\right)\left(x+2y\right)\left(2y-z\right)\)
Đặt \(x+y-z=a;x-y+z=b;y+z-x=c\)
Ta có:\(A=\left(a+b+c\right)^3-a^3-b^3-c^3\)
\(A=\left[\left(a+b\right)+c\right]^3-a^3-b^3-c^3\)
\(A=\left(a+b\right)^3+3\left(a+b\right)\cdot c\cdot\left(a+b+c\right)+c^3-a^3-b^3-c^3\)
\(A=a^3+b^3+3ab\left(a+b\right)+3\left(a+b\right)c\left(a+b+c\right)+c^3-a^3-b^3-c^3\)
\(A=3\left(a+b\right)\left(ab+ac+bc+c^2\right)\)
\(A=3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Hay \(A=3\cdot2x\cdot2y\cdot2z\)
\(A=24xyz\)
Đặt \(x^2+y^2=a;y^2+z^2=b\)
\(\Rightarrow z^2-x^2=\left(y^2+z^2\right)-\left(x^2+y^2\right)=b-a\)
\(\Rightarrow A=a^3+\left(b-a\right)^3-b^3\)
\(=\left(a-b\right)\left(a^2+ab+b^2\right)-\left(a-b\right)^3\)
\(=\left(a-b\right)\left[a^2+ab+b^2-a^2+2ab-b^2\right]\)
\(=3ab\left(a-b\right)=3\left(x^2+y^2\right)\left(y^2+z^2\right)\left(x^2-z^2\right)\)
\(=3\left(x^2+y^2\right)\left(y^2+z^2\right)\left(x-z\right)\left(x+z\right)\)
\(B=\left(x+y+z\right)^3-x^3-y^3-z^3\)
\(B=x^3+y^3+z^3+3.\left(x+y\right)\left(y+z\right)\left(z+x\right)-x^3-y^3-z^3\)
\(B=3.\left(x+y\right)\left(y+z\right)\left(z+x\right)\)
Đây là hằng đẳng thức:
\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)
Bạn tham khảo tại đây:
Câu hỏi của Nguyễn Công Minh Hoàng - Toán lớp 8 - Học toán với OnlineMath