K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 7 2018

Đặt \(x^2+y^2=a;y^2+z^2=b\)

\(\Rightarrow z^2-x^2=\left(y^2+z^2\right)-\left(x^2+y^2\right)=b-a\)

\(\Rightarrow A=a^3+\left(b-a\right)^3-b^3\)

\(=\left(a-b\right)\left(a^2+ab+b^2\right)-\left(a-b\right)^3\)

\(=\left(a-b\right)\left[a^2+ab+b^2-a^2+2ab-b^2\right]\)

\(=3ab\left(a-b\right)=3\left(x^2+y^2\right)\left(y^2+z^2\right)\left(x^2-z^2\right)\)

\(=3\left(x^2+y^2\right)\left(y^2+z^2\right)\left(x-z\right)\left(x+z\right)\)

19 tháng 7 2018

\(B=\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(B=x^3+y^3+z^3+3.\left(x+y\right)\left(y+z\right)\left(z+x\right)-x^3-y^3-z^3\)

\(B=3.\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

Đây là hằng đẳng thức:

\(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

28 tháng 8 2018

a) \(\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3-\left(y^2+z^2\right)^3\)

\(=\left[\left(x^2+y^2\right)^3+\left(z^2-x^2\right)^3\right]-\left(y^2+z^2\right)^3\)

\(=\left(x^2+y^2+z^2-x^2\right)\left[\left(x^2+y^2\right)^2-\left(x^2+y^2\right)\left(z^2-x^2\right)+\left(z^2-x^2\right)^2\right]-\left(y^2+z^2\right)^3\)

\(=\left(y^2+z^2\right)\left(x^4+2x^2y^2+y^4-x^2z^2+x^4-y^2z^2+x^2y^2+z^4-2z^2x^2+x^4\right)-\left(y^2+z^2\right)^3\)

\(=\left(y^2+z^2\right)\left[x^4+2x^2y^2+y^4-x^2z^2+x^4-y^2z^2+x^2y^2+z^4-2z^2x^2+x^4-\left(y^2+z^2\right)^2\right]\)

\(=\left(y^2+z^2\right)\left(x^4+2x^2y^2+y^4-x^2z^2+x^4-y^2z^2+x^2y^2+z^4-2z^2x^2+x^4-y^4-2y^2z^2-z^4\right)\)

\(=\left(y^2+z^2\right)\left(3x^4+3x^2y^2-3x^2z^2-3y^2z^2\right)\)

   = 3(y2+z2)(x4+x2y2-x2z2-y2z2)

   = 3(y2+z2)[x2(x2+y2)-z2(x2+y2)]

   = 3(y2+z2)(x2-z2)(x2+y2)

   = 3(y2+z2)(x-z)(x+z)(x2+y2)

b) \(\left(x+y\right)^3-x^3-y^3\)

\(=x^3+3x^2y+3xy^2+y^3-x^3-y^3\)

\(=3x^2y+3xy^2=3xy\left(x+y\right)\)

c) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=\left[\left(x+y\right)+z\right]^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+3\left(x+y\right)^2.z+3\left(x+y\right).z^2+z^3-x^3-y^3-z^3\)

\(=\left(x+y\right)^3+3\left(x+y\right)^2.z+3\left(x+y\right).z^2-\left(x^3+y^3\right)\)

\(=\left(x+y\right)\left[\left(x+y\right)^2+3\left(x+y\right).z+3z^2\right]-\left(x+y\right)\left(x^2-xy+y^2\right)\)

\(=\left(x+y\right)\left(x^2+2xy+y^2+3xz+3yz+3z^2-x^2+xy-y^2\right)\)

  = (x+y)[3xy+3xz+3yz+3z

  = 3(x+y)(xy+xz+yz+z2)

  = 3(x+y)[x(y+z)+z(y+z)]

  = 3(x+y)(x+z)(y+z)

28 tháng 8 2018

a) \(\left(x^2+y^2\right)^3+\left(z^2-x^3\right)-\left(y^2+z^2\right)^3\)

\(=x^6+3x^4y^2+3x^4y^2+y^6+z^2+-x^2+-y^6+-3y^4z+-3y^2z^4+-z^6\)

\(=x^6+3x^4y^2+3x^2y^4+-3y^4z^4+-z^6+-x^2+z^2\)

b) \(\left(x+y\right)^3-x^3-y^3\)

\(=x^3+3x^2y+3xy^2+y^3+-x^3+-y^3\)

\(=\left(x^3+-x^3\right)+\left(3x^2y\right)+\left(3xy^2\right)+\left(y^3+-y^3\right)\)

\(=3x^2y+3xy^2\)

c) \(\left(x+y+z\right)^3-x^3-y^3-z^3\)

\(=x^3+3x^2y+3x^2z+3xy^2+6xyz+3xz^2+y^3+3y^2z+3yz^2+z^2-x^3-y^3-z^3\)

\(=3x^2y+3x^2z+3xy^2+3xy^2+6xyz+3xz^2+3y^2z+3yz^2\)

P/s: Ko chắc

1 tháng 11 2016

a) x4+x3+2x2+x+1=(x4+x3+x2)+(x2+x+1)=x2(x2+x+1)+(x2+x+1)=(x2+x+1)(x2+1)

b)a3+b3+c3-3abc=a3+3ab(a+b)+b3+c3 -(3ab(a+b)+3abc)=(a+b)3+c3-3ab(a+b+c)

=(a+b+c)((a+b)2-(a+b)c+c2)-3ab(a+b+c)=(a+b+c)(a2+2ab+b2-ac-ab+c2-3ab)=(a+b+c)(a2+b2+c2-ab-ac-bc)

c)Đặt x-y=a;y-z=b;z-x=c

a+b+c=x-y-z+z-x=o

đưa về như bài b

d)nhóm 2 hạng tử đầu lại và 2hangj tử sau lại để 2 hạng tử sau ở trong ngoặc sau đó áp dụng hằng đẳng thức dề tính sau đó dặt nhân tử chung

e)x2(y-z)+y2(z-x)+z2(x-y)=x2(y-z)-y2((y-z)+(x-y))+z2(x-y)

=x2(y-z)-y2(y-z)-y2(x-y)+z2(x-y)=(y-z)(x2-y2)-(x-y)(y2-z2)=(y-z)(x2-2y2+xy+xz+yz)

27 tháng 9 2016

mk học lớp 7 thui

26 tháng 9 2017

a) \(\left(x-y\right)^2+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=\left(x-y\right)^2+\left(y-z+z-x\right)\left[\left(y-z\right)^2-\left(y-z\right)\left(z-x\right)+\left(z-x\right)^2\right]\)

\(=\left(x-y\right)^2+\left(y-x\right)\left(x^2+y^2+3z^2-3yz+xy-3xz\right)\)

\(=\left(x-y\right)\left(x-y-x^2-y^2-3z^2+3yz-xy+3xz\right)\)

Cô nghĩ phân tích đa thức này sẽ đẹp hơn:

\(\left(x-y\right)^3+\left(y-z\right)^3+\left(z-x\right)^3\)

\(=\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]+\left(z-x\right)^3\)

\(=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]+\left(z-x\right)^3\)

\(=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(z-x\right)^2\right]\)

\(=\left(x-z\right)\left(3y^2-3xy+3zx-3xyz\right)\)

\(=3\left(x-y\right)\left(y-z\right)\left(z-x\right)\)

b) \(\left(x+y+z\right)\left(xy+yz+zx\right)-xyz\)

\(=\left(xy+yz+zx\right)\left(x+y+z\right)-xyz\)

\(=xy\left(x+y+z\right)+\left(yz+zx\right)\left(x+y+z\right)-xyz\)

\(=xy\left(x+y+z-z\right)+\left(yz+zx\right)\left(x+y+z\right)\)

\(=xy\left(x+y\right)+z\left(y+x\right)\left(x+y+z\right)\)

\(=\left(x+y\right)\left[xy+z\left(x+y+z\right)\right]\)

\(=\left(x+y\right)\left(xy+zx+zy+z^2\right)\)

\(=\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)

\(=\left(x+y\right)\left(y+z\right)\left(z+x\right)\)

6 tháng 7 2022

a) \left(x-y\right)^2+\left(y-z\right)^3+\left(z-x\right)^3(xy)2+(yz)3+(zx)3

=\left(x-y\right)^2+\left(y-z+z-x\right)\left[\left(y-z\right)^2-\left(y-z\right)\left(z-x\right)+\left(z-x\right)^2\right]=(xy)2+(yz+zx)[(yz)2(yz)(zx)+(zx)2]

=\left(x-y\right)^2+\left(y-x\right)\left(x^2+y^2+3z^2-3yz+xy-3xz\right)=(xy)2+(yx)(x2+y2+3z23yz+xy3xz)

=\left(x-y\right)\left(x-y-x^2-y^2-3z^2+3yz-xy+3xz\right)=(xy)(xyx2y23z2+3yzxy+3xz

\left(x-y\right)^3+\left(y-z\right)^3+\left

 

=\left(x-y+y-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]+\left(z-x\right)^3


 

=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2\right]+\l

 

=\left(x-z\right)\left[\left(x-y\right)^2-\left(x-y\right)\left(y-z\right)+\left(y-z\right)^2-\left(z-x\

 

=\left(x-z\right)\left(

=3\left(x-y\right)\lefb) \left(x+y+z\right)\left(xy+yz+zx\right)-xyzb)(x+y+z)(xy+yz+zx)xyz

=\left(xy+yz+zx\right)\left(x+y+z\right)-xyz=(xy+yz+zx)(x+y+z)xyz

=xy\left(x+y+z\right)+\left(yz+zx\right)\left(x+y+z\right)-xyz=xy(x+y+z)+(yz+zx)(x+y+z)xyz

=xy\left(x+y+z-z\right)+\left(yz+zx\right)\left(x+y+z\right)=xy(x+y+zz)+(yz+zx)(x+y+z)

=xy\left(x+y\right)+z\left(y+x\right)\left(x+y+z\right)=xy(x+y)+z(y+x)(x+y+z)

=\left(x+y\right)\left[xy+z\left(x+y+z\right)\right]=(x+y)[xy+z(x+y+z)]

=\left(x+y\right)\left(xy+zx+zy+z^2\right)=(x+y)(xy+zx+zy+z2)

=\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]=(x+y)[x(y+z)+z(y+z)]

=\left(x+y\right)\left(y+z\right)\left(z+x\right)=(x+y)(y+z)(z+x)