A = ( 2^71 . 3^7 - 2^71 . 5 ) : 2^73
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(\dfrac{2}{73}\): \(\dfrac{2}{5}\) + \(\dfrac{71}{73}\) : \(\dfrac{2}{5}\)
= \(\dfrac{2}{73}\) \(\times\) \(\dfrac{5}{2}\) + \(\dfrac{71}{73}\)\(\times\) \(\dfrac{5}{2}\)
= \(\dfrac{5}{2}\) \(\times\) ( \(\dfrac{2}{73}\) + \(\dfrac{71}{73}\))
= \(\dfrac{5}{2}\) \(\times\) 1
= \(\dfrac{5}{2}\)
86-84+82-80+...+8-6+4-2
=2+2+2+...+2+2+2 (có tất cả 21 số 2)
=2.21
=42
77-75+73-71+...+7-5+3-1
= 2 + 2 + ... + 2 ( có 38 số 2)
= 2 . 38
= 76
tick đúng cho mình nhé !
Để chứng minh S chia hết cho 2 và S chia hết cho 57, ta sẽ xem xét từng thành phần trong công thức của S.
Đầu tiên, ta xét dãy từ 71 đến 72025. Trong dãy này, có 72025 - 71 + 1 = 71955 số.
Ta biết rằng nếu một số chia hết cho 2, thì số đó là số chẵn. Trong dãy từ 71 đến 72025, ta có 2 số lẻ liên tiếp (71 và 72), sau đó là 2 số chẵn liên tiếp (73 và 74), và tiếp tục lặp lại quy luật này. Vì vậy, trong 71955 số này, ta có 71955/2 = 35977.5 cặp số chẵn và lẻ.
Do đó, tổng của các số chẵn trong dãy này là 35977.5 * 2 = 71955.
Tiếp theo, ta xét số 72024. Ta biết rằng 72024 chia hết cho 2.
Cuối cùng, ta xét số 72025. Ta biết rằng 72025 chia hết cho 57, vì 72025 = 57 * 1265.
Vậy tổng S chia hết cho 2 và chia hết cho 57.
a: \(20-\left[30-\left(5-1\right)^2\right]\)
\(=20-\left[30-4^2\right]\)
\(=20-14=6\)
b: \(71+\dfrac{50}{5+3\left(57-6\cdot7\right)}\)
\(=71+\dfrac{50}{5+3\cdot\left(57-42\right)}\)
\(=71+\dfrac{50}{5+3\cdot15}=71+\dfrac{50}{50}=72\)
c: \(4\cdot\left\{270:\left[50-\left(2^5+45:5\right)\right]\right\}\)
\(=4\cdot\left\{270:\left[50-32-9\right]\right\}\)
\(=4\cdot\left\{\dfrac{270}{50-41}\right\}=4\cdot\dfrac{270}{9}=4\cdot30=120\)
d: \(411-\left[\dfrac{\left(107+3\right)}{5}-2^2\right]\)
\(=411-\left[\dfrac{110}{5}-4\right]\)
=410-22+4
=410-18
=392
e: \(450-5\left[3^2\left(7^5:7^3-41\right)-12\right]+18\)
\(=450-5\left[9\cdot\left(7^2-41\right)-12\right]+18\)
\(=450-5\cdot\left[9\cdot8-12\right]+18\)
=468-5*60
=468-300
=168
f:
\(102-150:\left[18-2\cdot\left(10-8\right)^2\right]+1018^0\)
\(=102-150:\left[18-2\cdot4\right]+1\)
\(=103-\dfrac{150}{18-8}=103-15=88\)
Ta có: A = 1 + 2012 + 20122 +....+ 201272
2012A = 2012 + 20122 + 20123 +....+ 201273
2012A - A = (2012 + 20122 + 20123 +....+ 201273) - (1 + 2012 + 20122 +....+ 201272)
2011A = 201273 - 1
A = \(\frac{2012^{73}-1}{2011}\) (1)
B = 201273 - 1 (2)
Từ (1) và (2) => A < B
Ta thấy A gồm có 99 số hạng nên ta nhóm mỗi nhóm 3 số hạng.
Ta có: A = 1 + 5 + 52 + 53 + 54 + 55 +...+ 597 + 598 + 599
= (1 + 5 + 52 )+ (53 + 54 + 55 )+...+( 597 + 598 + 599 )
=(1 + 5 + 52 )+ 53(1 + 5 + 52 ) +...+ 597(1 + 5 + 52 )
= ( 1 + 5 + 52)(1 + 53+....+597)
= 31(1 + 53+....+597)
Vì có một thừa số là 31 nên A chia hết cho 31.
P/s Đừng để ý câu trả lời của mình
A=1+1/2+1+1/6+1+1/12+...+1+1/90=
=9+1/2+1/6+1/12+...+1/90
1/2+1/6+1/12+...+1/90=
1/1x2+1/2x3+2/3x4+...+1/9x10=
\(=\dfrac{2-1}{1x2}+\dfrac{3-2}{2x3}+\dfrac{4-3}{3x4}+...+\dfrac{10-9}{9x10}=\)
\(=1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}=\)
\(=1-\dfrac{1}{10}=\dfrac{9}{10}\)
\(\Rightarrow A=9+\dfrac{9}{10}=9\dfrac{9}{10}\)
Đặt B=719+718+717+...+712+71
71B=7110+719+718+717+...+712
71B-B=7110-71
70B=7110-71=>B=\(\frac{71^{10}-71}{70}\)
Ta có A=70.\(\frac{71^{10}-71}{70}\)
=7110-71
\(A=\left(2^{71}.3^7-2^{71}.5\right):2^{73}\)
\(A=\dfrac{2^{71}.\left(3^7-5\right)}{2^{73}}\)
\(A=\dfrac{2^{71}.2182}{2^{71}.2^2}\)
\(A=\dfrac{2182}{4}\)
\(A=\dfrac{1091}{2}\)