K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 9 2018

Bạn xem lời giải của cô Huyền ở đường link phía dưới nhé:

Câu hỏi của Edogawa Conan - Toán lớp 8 - Học toán với OnlineMath

28 tháng 3 2020

Tham khảo link này: https://olm.vn/hoi-dap/detail/81945110314.html

13 tháng 4 2020

hình tự vẽ nhé

do PK // BD =) áp dụng định lí ta-lét vào tam giác CBD được: CP/PB = CK/KD      (1)

dễ dàng chứng minh được tứ giác ABKD là hình bình hành =) KD=AB và AD=BK

tương tự tứ giác ABCI cũng là hình bình hành =) AI =BC

có góc PKC= góc BDC (PK//BD)

góc BDA=góc BKP (cùng = DBK)

góc AID=góc BCK 

dễ dàng =) góc ADI = góc BCK  

=) góc DAI = góc KBC

=) tam giác DAI = tam giác KBC (c-g-c) =) DI=KC

vì AB//DI nên áp dụng hệ quả của định lí ta-lét đc: DI/AB=DM/MB=KC/KD    (2)

từ (1) và (2) =) BM/MD = BP/PC 

áp dụng định lí ta lét đảo =) MP//DC

chưa hiểu thì hỏi nhé

13 tháng 4 2020

kohkkij

21 tháng 3 2020

F A D C P B M

23 tháng 3 2020

a) Do CD // AB, DM // BD nên ta dễ thấy : \(\Delta DMC\)đồng dạng với \(\Delta MCA\left(g.g\right)\)

\(\Rightarrow\frac{MC}{CA}=\frac{CD}{AB}=\frac{AF}{AB}\)( vì ADCF là hình bình hành nên CD = AF ) (1)

Lại có : FP // AC nên : \(\frac{CP}{CB}=\frac{AF}{AB}\left(2\right)\)

Từ (1) và (2) => \(\frac{CM}{CA}=\frac{CP}{CB}\)

Theo định lí Ta-let đảo, ta có : MP // AB

b) Gọi N và N' là giao điểm MP,DB với CF

Ta có : \(\frac{CN}{CF}=\frac{CM}{CA}=\frac{CD}{AB}\)(ở phần a)

\(\frac{CN'}{N'F}=\frac{CD}{FB}\Rightarrow\frac{AN'}{CF}=\frac{CD}{\left(FB+CD\right)}=\frac{CD}{AB}\)( vì CD = AF )

Vậy CN = CN' nên N' trùng N

Từ đó, ta suy ra được : MP, CF, DB đồng quy

Đề vô lý thật sự, hình bình hành ABCD mà lại AB<CD?????

Check lại đề hộ mình nha bạn.

Hình bình hành ABCD mà lại \(AB< CD\)

Tức '-' đánh olm lại không hiện chứ ==...