cho tam giác nhọn AB<AC.Gọi M là trung điểm của AC,E là trung điểm của BC.Gọi D là điểm đối xứng với B qua M và N là điểm đối xứng với A qua E
a)cm tứ giác ABCD là HBH
b) cm D đối xứng với N qua C
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔADB và ΔADE có
AD chung
\(\widehat{BAD}=\widehat{EAD}\)
AB=AE
Do đó: ΔADB=ΔADE
b: Ta có: ΔADB=ΔADE
=>\(\widehat{ABD}=\widehat{AED}\)
=>\(\widehat{ABC}=\widehat{AEF}\)
Xét ΔEAF và ΔBAC có
\(\widehat{AEF}=\widehat{ABC}\)
AE=AB
\(\widehat{EAF}\) chung
Do đó: ΔEAF=ΔBAC
=>AF=AC
c: Ta có: AB+BF=AF
AE+EC=AC
mà AB=AE và AF=AC
nên BF=EC
Ta có: \(\widehat{ABD}+\widehat{FBD}=180^0\)(hai góc kề bù)
\(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)
mà \(\widehat{ABD}=\widehat{AED}\)
nên \(\widehat{FBD}=\widehat{CED}\)
Ta có: ΔABD=ΔAED
=>DB=DE
Xét ΔDBF và ΔDEC có
DB=DE
\(\widehat{DBF}=\widehat{DEC}\)
BF=EC
Do đó: ΔDBF=ΔDEC
Bổ sung đề: Trên tia đối của tia BA, lấy F sao cho BF=EC
a: Xét ΔADB và ΔADE có
AD chung
\(\widehat{DAB}=\widehat{DAE}\)
AB=AE
Do đó: ΔADB=ΔADE
b: AB+BF=AF
AE+EC=AC
mà AB=AE
và BF=EC
nên AF=AC
c: ta có; ΔABD=ΔAED
=>\(\widehat{ABD}=\widehat{AED}\)
Ta có: \(\widehat{ABD}+\widehat{DBF}=180^0\)(hai góc kề bù)
\(\widehat{AED}+\widehat{CED}=180^0\)(hai góc kề bù)
mà \(\widehat{ABD}=\widehat{AED}\)
nên \(\widehat{DBF}=\widehat{DEC}\)
Ta có; ΔABD=ΔAED
=>DB=DE
Xét ΔDBF và ΔDEC có
DB=DE
\(\widehat{DBF}=\widehat{DEC}\)
BF=EC
Do đó: ΔDBF=ΔDEC
cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E đề nek
đề đây nha mn :(( cho tam giác ABC nhọn (AB<AC) nội tiếp đường tròn (O;K) có BD là đường kính và đường cao AH của tam giác ABC cắt (O;K) tại E
Cho tam giác ABC nhọn AB<AC M là trung điểm của BC trên tia đời của tia MA có điểm E s cho AM=ME
a) cmr tam giác AMB=CMR
b từ A kẻ D s cho HA =HD cmr CE = BP
c cmr CE = CD tam giác AMD là tam giác j vì s
D CMR AM NHỎ HƠN AB +AC /2
CHỈ LM MỖI Ý D THUI NHA NHANH NHA
a: Xét ΔAMB và ΔEMC có
MA=ME
góc AMB=góc EMC
MB=MC
=>ΔAMB=ΔEMC
b: Xet ΔBAD có
BH vừa là đường cao, vừa là trung tuyến
=>ΔBAD cân tại B
=>BD=BA=CE
c: Xet ΔMAD có
MH vừa là đường cao,vừa là trung tuyến
=>ΔMAD cân tại M
d: AM<1/2(AB+AC)
=>AE<AB+AC
=>AE<BE+AB(luôn đúng)
a/ M là trung điểm AC, D đối xứng với B qua M hay M là trung điểm BD
Vậy: ABCD là hình bình hành (Tứ giác có hai đường chéo cắt nhau tại trung điểm của mỗi đường là hình bình hành) (đpcm)
===========
b/ N đối xứng với A qua E hay E là trung điểm AN
CE // AD (do CE thuộc BC, ABCD là hình bình hành)
⇒ CE là đường trung bình của △NAB ⇒ C là trung điểm ND
Vậy: D đối xứng với N qua C (đpcm)
a: Xét tứ giác ABCD có
M là trung điểm của đường chéo AC
M là trung điểm của đường chéo BD
Do đó: ABCD là hình bình hành