K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 11 2018

\(A=x^4+2x^3-16x^2-2x+15\)

\(=\left(x^4-x^2\right)+\left(2x^3-2x\right)-\left(15x^2-15\right)\)

\(=x^2\left(x^2-1\right)+2x\left(x^2-1\right)-15\left(x^2-1\right)\)

\(=\left(x^2-1\right)\left(x^2+2x-15\right)\)

\(=\left(x-1\right)\left(x+1\right)\left(x-3\right)\left(x+5\right)\)

Vì x là số tự nhiên lẻ => x = 2k+1 (k thuộc N)

=>\(A=\left(2k+1-1\right)\left(2k+1+1\right)\left(2k+1-3\right)\left(2k+1+5\right)\)

\(=2k\left(2k+2\right)\left(2k-2\right)\left(2k+6\right)\)

\(=16k\left(k+1\right)\left(k-1\right)\left(k+3\right)⋮16\) (đpcm)

23 tháng 10 2023

a: \(2x+3⋮x-2\)

=>\(2x-4+7⋮x-2\)

=>\(x-2\in\left\{1;-1;7;-7\right\}\)

=>\(x\in\left\{3;1;9;-5\right\}\)

mà x là số tự nhiên

nên \(x\in\left\{1;3;9\right\}\)

b:Cái mệnh đề này sai với n=5 nha bạn

27 tháng 5 2015

n^2 là bình phương của 1 số nên có dạng 3k+1 hoặc 3k

Nếu n^2 có dạng 3k+1 thì B có dạng 3k+1+1=3k+2 không chia hết cho 3

Nếu n^2 có dạng 3k thì B có dạng 3k+1không chia hết cho 3

5 tháng 1 2017

nhìn cái tên của m đã thấy ức chế r, thằng sỉ nhục tổ quốc!!!

8 tháng 10 2017

xl mk thấy tên bn ghê wa

23 tháng 7 2015

làm 1 bài thôi có được không.

12 tháng 10 2015

#ha le ha ban trả lời câu 2,3,4 giúp minh với

26 tháng 12 2021

\(=x^3\left(x+2\right)-x\left(x+2\right)\)

\(=\left(x+2\right)\cdot x\cdot\left(x+1\right)\left(x-1\right)\)

Vì đây là tích của bốn số nguyên liên tiếp

nên \(\left(x+2\right)\cdot x\cdot\left(x+1\right)\cdot\left(x-1\right)⋮24\)

19 tháng 8 2017

\(A=16^n-15n-1=\left(16^n-1^n\right)-15n\)

Áp dụng hằng đẳng thức phụ :

\(a^k-b^k=\left(a-b\right)\left(a^{k-1}+a^{k-2}b+a^{k-3}b^2+.....+ab^{k-2}+b^{k-1}\right)\)

ta có : \(16^n-1^n=\left(16-1\right)\left(16^{n-1}+16^{n-2}+.....+16^2+16+1\right)\)

\(=15\left(16^{n-1}+16^{n-2}+.....+16^2+16+1\right)⋮15\)

Do đó \(16^n-1^n⋮15\)

Mà \(15n⋮15\) nên \(A=\left(16^n-1^n\right)-15n⋮15\)(đpcm)

28 tháng 7 2018

2 số lẻ liên tiếp là 
2k+1;2k+3(k thuoc N) 
tổng là: 
2k+1+2k+3
=4k+4 
=4(k+4) 
chia het cho 4

chắc vậy .

28 tháng 7 2018

a) Gọi 2 số tự nhiên lẻ liên tiếp là 2k + 1 ; 2k + 3

=> 2k + 1 + 2k + 3 = ( 2k + 2k ) + ( 1 + 3 ) = 4k + 4 \(⋮\)4 ( Vì 4k và 4 đều \(⋮\)4 )

b) Gọi 3 số tự nhiên chẵn liên tiếp là 2k ; 2k + 2 ; 2k + 4

=> 2k + 2k + 2 + 2k + 4 = ( 2k + 2k + 2k ) + ( 2 + 4 ) = 6k + 6 \(⋮\)6 ( Vì 6k và 6 đều \(⋮\)6 )