chuyển tổng thành tích
5(x-y)3-5(y-x)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu 1:
\(\left(x+y\right)^2+3\left(x+y\right)-10\)
\(=\left(x+y\right)^2+3\left(x+y\right)+2,25-12,25\)
\(=\left(x+y+1,5\right)^2-3,5^2\)
\(=\left(x+y+1,5+3,5\right)\left(x+y+1,5-3,5\right)\)
\(=\left(x+y+5\right)\left(x+y-2\right)\)
Câu 2:
\(2x^2-y^2+xy\)
\(=2x^2-y^2+2xy-xy\)
\(=\left(2x^2+2xy\right)-\left(xy+y^2\right)\)
\(=2x\left(x+y\right)-y\left(x+y\right)\)
\(=\left(2x-y\right)\left(x+y\right)\)
Câu 3:
\(x^{64}+x^{32}+1\)
\(=x^{64}+2x^{32}+1-x^{32}\)
\(=\left(x^{32}+1\right)^2-\left(x^{16}\right)^2\)
\(=\left(x^{32}+1+x^{16}\right)\left(x^{32}+1-x^{16}\right)\)
\(=\left(x^{32}+x^{16}+1\right)\left(x^{32}-x^{16}+1\right)\)
Câu 4:
\(x^2+3cd\left(2-3cd\right)-10xy-1+25y^2\)
\(=x^2+25y^2-10xy+6cd-\left(3cd\right)^2-1\)
\(=\left(x^2+25y^2-10xy\right)-\left(\left(3cd\right)^2+1-6cd\right)\)
\(=\left(x+5y\right)^2-\left(3cd-1\right)^2\)
\(=\left(\left(x+5y\right)+\left(3cd-1\right)\right)\cdot\left(\left(x+5y\right)-\left(3cd-1\right)\right)\)
\(=\left(x+5y+3cd-1\right)\left(x+5y-3cd+1\right)\)
= [\(\left(x-y\right)^3\)\(-1\)] - \(\left[3\left(x-y\right)\left(x-y-1\right)\right]\)
= \(\left\{\left(x-y-1\right)\left[\left(x-y\right)^2+2\left(x-y\right)+1\right]\right\}\)- \(\left[3\left(x-y\right)\left(x-y-1\right)\right]\)
= \(^{\left(x-y-1\right)\left[\left(x-y\right)^2+2\left(x-y\right)+1-3\left(x-y\right)\right]}\)
= \(\left(x-y-1\right)\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]\)
= \(\left(x-y-1\right)\left(x-y-1\right)^2\)
= \(^{\left(x-y-1\right)^3}\)
T*ck mình nha. Suy nghĩ bài này cực lắm đó!
= (x-y-1) [(x-y)^2 + (x-y) + 1] - 3(x-y)(x-y-1)
= (x-y-1) [(x-y)^2 + (x-y) + 1 - 3(x-y)]
= (x-y-1) [(x-y)^2 - 2(x-y)+1]
= (x-y-1)(x-y-1)^2
=(x-y-1)^3
a) x2+2xy+y2-4= (x+y)2-22 => hiệu hai bình phương
=(x+y+2)(x+y-2)
Bài 2:
a: \(=\left(x+y\right)^2-4=\left(x+y+2\right)\left(x+y-2\right)\)
b: \(=4x^2-\left(y+2\right)^2\)
\(=\left(2x-y-2\right)\left(2x+y+2\right)\)
c: \(=25a^4-\left(x-2y\right)^2\)
\(=\left(5a^2-x+2y\right)\left(5a^2+x-2y\right)\)
a)(x+y)(x+y)=x^2+2xy+y^2
b)(x-y)(x-y)=x^2-2xy+y^2
c)(x-y)(x-1)=x^2-x-xy+y
d)(x+5)(x-1)+x^2+4x-5
\(5\left(x-y\right)^3-5\left(y-x\right)=5\left(x-y\right)^3+5\left(x-y\right)=5\left(x-y\right)\left[\left(x-y\right)^2+1\right]\)