K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Ta có: \(\sqrt{2+\sqrt{3x-5}}=\sqrt{x+1}\)

\(\Leftrightarrow\sqrt{3x-5}+2=x+1\)

\(\Leftrightarrow\sqrt{3x-5}=x-1\)

\(\Leftrightarrow x^2-2x+1-3x+5=0\)

\(\Leftrightarrow x^2-5x+6=0\)

\(\Leftrightarrow\left(x-2\right)\left(x-3\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=2\left(nhận\right)\\x=3\left(nhận\right)\end{matrix}\right.\)

26 tháng 8 2021

ĐKXĐ: \(\left\{{}\begin{matrix}2+\sqrt{3x-5}\ge0\\3x-5\ge0\\x+1\ge0\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}\sqrt{3x-5}\ge-2\\x\ge\dfrac{5}{3}\\x\ge-1\end{matrix}\right.\)\(\Rightarrow x\ge\dfrac{5}{3}\)

 

a: =>2x+1=27

=>2x=26

=>x=13

b: =>\(\sqrt[3]{x+5}=x+5\)

=>x+5=(x+5)^3

=>(x+5)(x+4)(x+6)=0

=>x=-5;x=-4;x=-6

c: =>2-3x=-8

=>3x=10

=>x=10/3

d: =>\(\sqrt[3]{x-1}=x-1\)

=>(x-1)^3=(x-1)

=>x(x-1)(x-2)=0

=>x=0;x=1;x=2

23 tháng 10 2021

\(ĐK:-\dfrac{1}{3}\le x\le2\\ PT\Leftrightarrow\left(\sqrt{3x+1}-2\right)-x+1-\sqrt{2-x}\left(\sqrt{2-x}-1\right)=0\\ \Leftrightarrow\dfrac{3\left(x-1\right)}{\sqrt{3x+1}+2}-\left(x-1\right)-\dfrac{\sqrt{2-x}\left(1-x\right)}{\sqrt{2-x}+1}=0\\ \Leftrightarrow\left(x-1\right)\left(\dfrac{3}{\sqrt{3x+1}+2}+\dfrac{\sqrt{2-x}}{\sqrt{2-x}+1}-1\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x=1\left(tm\right)\\\dfrac{3}{\sqrt{3x+1}+2}+\dfrac{\sqrt{2-x}}{\sqrt{2-x}+1}-1=0\end{matrix}\right.\)

Với \(x\ge-\dfrac{1}{3}\) thì \(\dfrac{3}{\sqrt{3x+1}+2}+\dfrac{\sqrt{2-x}}{\sqrt{2-x}+1}-1>0\)

Vậy pt có nghiệm duy nhất \(x=1\)

 

NV
23 tháng 10 2021

ĐKXĐ: \(-\dfrac{1}{3}\le x\le2\)

\(\sqrt{3x+1}=3-\sqrt{2-x}\) (do \(-\dfrac{1}{3}\le x\le2\Rightarrow3-\sqrt{2-x}\ge3-\sqrt{2+\dfrac{1}{3}}>0\))

\(\Leftrightarrow3x+1=9+2-x-6\sqrt{3-x}\)

\(\Leftrightarrow3\sqrt{2-x}=5-2x\)

\(\Leftrightarrow9\left(2-x\right)=\left(5-2x\right)^2\)

\(\Leftrightarrow4x^2-11x+7=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{7}{4}\end{matrix}\right.\) (thỏa mãn)

23 tháng 7 2023

\(\sqrt[]{5-x^6}+\sqrt[]{3x^4-2}=1\left(1\right)\)

Điều kiện \(\left\{{}\begin{matrix}5-x^6\ge0\\3x^4-2\ge0\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x^6\le5\\x^4\ge\dfrac{2}{3}\end{matrix}\right.\)  \(\) \(\Rightarrow\left\{{}\begin{matrix}-\sqrt[6]{5}\le x\le\sqrt[6]{5}\\\left[{}\begin{matrix}x\le-\sqrt[4]{\dfrac{2}{3}}\\x\ge\sqrt[4]{\dfrac{2}{3}}\end{matrix}\right.\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}-\sqrt[6]{5}\le x\le-\sqrt[4]{\dfrac{2}{3}}\\\sqrt[4]{\dfrac{2}{3}}\le x\le\sqrt[6]{5}\end{matrix}\right.\) \(\left(2\right)\)

\(\Rightarrow\left(1\right)\) thỏa \(\Leftrightarrow\left\{{}\begin{matrix}5-x^6\le1\\3x^4-2\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x^6\le4\\x^4\le1\end{matrix}\right.\) \(\Leftrightarrow\left\{{}\begin{matrix}x\le\sqrt[3]{2}\\0\le x\le1\end{matrix}\right.\) \(\Leftrightarrow0\le x\le1\left(3\right)\)

\(\left(2\right),\left(3\right)\Rightarrow\sqrt[4]{\dfrac{2}{3}}\le x\le1\) \(\Rightarrow\sqrt[4]{\dfrac{2}{3}}< x< 1\)

23 tháng 7 2023

thanks

AH
Akai Haruma
Giáo viên
27 tháng 1 2022

Bạn tham khảo thêm ở link sau:

https://hoc24.vn/cau-hoi/giai-phuong-trinhsqrt3x2-5x1-sqrtx2-2sqrt3leftx2-x-1right-sqrtx2-3x4.167769342831