K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 9 2017

hàm số đã cho có TXĐ là D=R khi và chỉ khi pt cosx+m= vô nghiệm <=>m\(\notin\)[-1;1]

14 tháng 9 2017

cosx+m=0 vô nghiệm

NV
30 tháng 6 2021

a.

\(\Leftrightarrow m-cosx\ge0\) ; \(\forall x\)

\(\Leftrightarrow m\ge max\left(cosx\right)\)

\(\Leftrightarrow m\ge1\)

b.

\(\Leftrightarrow2sinx-m\ge0\) ; \(\forall x\)

\(\Leftrightarrow m\le2sinx\) ; \(\forall x\)

\(\Leftrightarrow m\le\min\limits_{x\in R}\left(2sinx\right)\)

\(\Leftrightarrow m\le-2\)

c.

\(\Leftrightarrow cosx+m\ne0\) ; \(\forall x\)

\(\Leftrightarrow\left[{}\begin{matrix}m>\max\limits_R\left(cosx\right)\\m< \min\limits_R\left(cosx\right)\end{matrix}\right.\)

\(\Leftrightarrow\left[{}\begin{matrix}m>1\\m< -1\end{matrix}\right.\)

NV
13 tháng 12 2020

\(\sqrt{3}sinx+cosx\ne0\)

\(\Leftrightarrow\dfrac{\sqrt{3}}{2}sinx+\dfrac{1}{2}cosx\ne0\)

\(\Leftrightarrow sin\left(x+\dfrac{\pi}{6}\right)\ne0\)

\(\Leftrightarrow x+\dfrac{\pi}{6}\ne k\pi\)

\(\Leftrightarrow x\ne-\dfrac{\pi}{6}+k\pi\)

22 tháng 8 2021

1.

Hàm số xác định khi \(\left\{{}\begin{matrix}\dfrac{1+x}{1-x}\ge0\\1-x\ne0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-1\le x< 1\\x\ne1\end{matrix}\right.\Leftrightarrow-1\le x< 1\)

2.

Hàm số xác định khi \(cosx+1\ne0\Leftrightarrow cosx\ne-1\Leftrightarrow x\ne-\pi+k2\pi\)

3.

Hàm số xác định khi \(cosx-cos3x\ne0\Leftrightarrow sin2x.sinx\ne0\Leftrightarrow\left[{}\begin{matrix}x\ne k\pi\\x\ne\dfrac{k\pi}{2}\end{matrix}\right.\)

25 tháng 11 2023

a: ĐKXĐ: \(cosx-1\ne0\)

=>\(cosx\ne1\)

=>\(x\ne k2\Omega\)

b: ĐKXĐ: sin x-1>=0

=>sin x>=1

mà \(-1< =sinx< =1\)

nên sin x=1

=>\(x=\dfrac{\Omega}{2}+k2\Omega\)

c:

-1<=sin x<=1

=>-1+1<=sin x+1<=1+1

=>0<=sin x+1<=2

ĐKXĐ: \(\dfrac{1+sinx}{1-cosx}>=0\)

mà \(1+sinx>=0\)(cmt)

nên \(1-cosx>0\)

=>\(cosx< 1\)

mà -1<=cosx<=1

nên \(cosx\ne1\)

=>\(x\ne k2\Omega\)

a: ĐKXĐ: 2*sin x+1<>0

=>sin x<>-1/2

=>x<>-pi/6+k2pi và x<>7/6pi+k2pi

b: ĐKXĐ: \(\dfrac{1+cosx}{2-cosx}>=0\)

mà 1+cosx>=0

nên 2-cosx>=0

=>cosx<=2(luôn đúng)

c ĐKXĐ: tan x>0

=>kpi<x<pi/2+kpi

d: ĐKXĐ: \(2\cdot cos\left(x-\dfrac{pi}{4}\right)-1< >0\)

=>cos(x-pi/4)<>1/2

=>x-pi/4<>pi/3+k2pi và x-pi/4<>-pi/3+k2pi

=>x<>7/12pi+k2pi và x<>-pi/12+k2pi

e: ĐKXĐ: x-pi/3<>pi/2+kpi và x+pi/4<>kpi

=>x<>5/6pi+kpi và x<>kpi-pi/4

f: ĐKXĐ: cos^2x-sin^2x<>0

=>cos2x<>0

=>2x<>pi/2+kpi

=>x<>pi/4+kpi/2

 

5 tháng 9 2017

TXĐ:

\(\left[{}\begin{matrix}sin\left(x+\dfrac{\Pi}{3}\right)\ne0\\sinx-cosx\ne0\end{matrix}\right.\)

Bạn biết cách giải pt lượng giác chưa??? Nếu chưa thì bài này hơi căng!

<=>\(\left[{}\begin{matrix}x+\dfrac{\Pi}{3}\ne k\Pi\\\sqrt{2}sin\left(x-\dfrac{\Pi}{4}\right)\ne0\end{matrix}\right.\)(SGK Đại Số trang 35)

<=>\(\left[{}\begin{matrix}x\ne-\dfrac{\Pi}{3}+k\Pi\\x\ne\dfrac{\Pi}{4}+k\Pi\end{matrix}\right.\)

Vậy TXĐ: D=R\{-\(\dfrac{\Pi}{3}\)+\(k\Pi\);\(\dfrac{\Pi}{4}+k\Pi\)}

5 tháng 9 2017

Bạn cho mình hỏi tiếp 3 câu này nha: Tìm TXĐ của hàm số sau: 1/y=7sin(x-pi/5)/cos(x-pi). ( hồi nãy là cotx thì đặt đk là sinx khác 0 nhưng h trên tử là sin thì...) 2/y=3-cot3x/sin2x+1 3/y=cot(2x-pi/8)/(tanx-1).sin^2x ( dấu chấm là dấu nhân nha)

Giúp mình với!!Cảm ơn bạn trước nha!!

NV
20 tháng 6 2019

\(sinx+m\ge0\) \(\forall x\)

\(\Rightarrow sinx\ge-m\) \(\forall x\)

\(\Rightarrow-m\le\min\limits_{x\in R}\left(sinx\right)=-1\)

\(\Rightarrow m\ge1\)

20 tháng 6 2019

cảm ơn