K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

25 tháng 8 2017

A B C x

A B C x

A B C x

9 tháng 4 2016

$\frac{3}{5}$ tương ứng với số 3 phần 5 nhé bạn

25 tháng 1 2019

a: Xét ΔACI vuông tại C và ΔBHI vuông tại H có

\(\widehat{AIC}=\widehat{BIH}\)(hai góc đối đỉnh)

Do đó: ΔACI~ΔBHI

b: Ta có: ΔCAB vuông tại C

=>\(CA^2+CB^2=AB^2\)

=>\(CB^2=25^2-15^2=400\)

=>\(CB=\sqrt{400}=20\left(cm\right)\)

Xét ΔABC có AI là phân giác

nên \(\dfrac{CI}{CA}=\dfrac{BI}{BA}\)

=>\(\dfrac{CI}{15}=\dfrac{BI}{25}\)

=>\(\dfrac{CI}{3}=\dfrac{BI}{5}\)

mà CI+BI=CB=20cm

nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:

\(\dfrac{CI}{3}=\dfrac{BI}{5}=\dfrac{CI+BI}{3+5}=\dfrac{20}{8}=2,5\)

=>\(CI=2,5\cdot3=7,5\left(cm\right)\)

c: Ta có: ΔACI~ΔBHI

=>\(\widehat{CAI}=\widehat{HBI}\)

mà \(\widehat{CAI}=\widehat{BAH}\)

nên \(\widehat{HBI}=\widehat{HAB}\)

Xét ΔHBI vuông tại H và ΔHAB vuông tại H có

\(\widehat{HBI}=\widehat{HAB}\)

Do đó: ΔHBI~ΔHAB

=>\(\dfrac{HB}{HA}=\dfrac{HI}{HB}\)

=>\(HB^2=HI\cdot HA\)

a: XetΔICA vuông tạiC và ΔIHB vuông tại H có

góc AIC=góc BIH

=>ΔICA đồng dạng với ΔIHB

b: \(CB=\sqrt{25^2-15^2}=20\left(cm\right)\)

AI là phân giác

=>CI/AC=IB/AB

=>CI/3=IB/5=(CI+IB)/(3+5)=20/8=2,5

=>CI=7,5cm; IB=12,5cm

 

a: Xét ΔBMD và ΔCMA có 

MB=MC

\(\widehat{BMD}=\widehat{CMA}\)

MD=MA

Do đó: ΔBMD=ΔCMA

b: Xét tứ giác ABDC có 

M là trung điểm của AD

M là trung điểm của BC

Do đó: ABDC là hình bình hành

Suy ra: AB//CD

c: Xét ΔDAE có

M là trung điểm của DA

MB//AE

Do đó: B là trung điểm của ED

8 tháng 2 2017

11 tháng 8 2016

đề bài yêu cầu j vậy