Vẽ góc xAy và tia phân giác At. Lấy điểm D trên At. Vẽ đoạn thẳng DB vuông góc với Ax ở B. Lấy điểm C trên Ay sao cho AC = AB. Chứng minh DB = DC và DC vuông góc với Ay.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bạn tự vẽ hình nhé !
\(\Delta ADB,\Delta ADC\)có AB = AC ;\(\widehat{BAD}=\widehat{CAD}\)(At là phân giác góc xAy) ; chung AD
\(\Rightarrow\Delta ADC=\Delta ADB\left(c.g.c\right)\)\(\Rightarrow\hept{\begin{cases}DC=DB\\\widehat{ACD}=\widehat{ABD}\end{cases}}\)mà\(\widehat{ABD}=90^0\)(DB _|_ Ax tại B) =>\(\widehat{ACD}=90^0\)=>DC _|_ Ay
Xét ΔBAD và ΔCAD có
AB=AC
\(\widehat{BAD}=\widehat{CAD}\)
AD chung
Do đó: ΔBAD=ΔCAD
Suy ra: \(\widehat{ABD}=\widehat{ACD}=90^0\) và DB=DC
=>DC vuông góc với Ay
a: Xét ΔABD vuông tại B và ΔACD vuông tại C có
AD chung
\(\widehat{BAD}=\widehat{CAD}\)
Do đó: ΔABD=ΔACD
=>AB=AC và DB=DC
Xét ΔABC có AB=AC
nên ΔABC cân tại A
b: Ta có: AB=AC
=>A nằm trên đường trung trực của BC(1)
Ta có: DB=DC
=>D nằm trên đường trung trực của BC(2)
Từ (1) và (2) suy ra AD là đường trung trực của BC
c: Xét ΔDBN vuông tại B và ΔDCM vuông tại C có
DB=DC
\(\widehat{BDN}=\widehat{CDM}\)(hai góc đối đỉnh)
Do đó: ΔDBN=ΔDCM
d: Ta có: ΔDBN=ΔDCM
=>DN=DM và BN=CM
Ta có: AB+BN=AN
AC+CM=AM
mà AB=AC và BN=CM
nên AN=AM
=>A nằm trên đường trung trực của NM(3)
ta có: DM=DN
=>D nằm trên đường trung trực của MN(4)
Từ (3) và (4) suy ra AD là đường trung trực của MN
Xét ΔAMN có \(\dfrac{AB}{BN}=\dfrac{AC}{CM}\)
nên BC//MN