so sánh :
A = \(\dfrac{10^{99}+1}{10^{100}+1}\)
B = \(\dfrac{10^{100}+1}{10^{101}+1}\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
ta có:
1/10.A=10100+1/10(1099+1)
1/10.A=10100+1/10100+10
1/10.A=1-(9/10100+10)
1/10.B=10101+1/10(10100+1)
1/10.B=10101+1/10101+10
1/10.B=1-(9/10101+10)
vì(10101+10)>(10100+1)=> 9/10101+10 < 9/10100+10 => 1-(9/10101+10) > 1-(9/10100+10)
hay 1/10.A>1/10.B
=>A>B
ta có:
1/10.A=10100+1/10(1099+1)
1/10.A=10100+1/10100+10
1/10.A=1-(9/10100+10)
1/10.B=10101+1/10(10100+1)
1/10.B=10101+1/10101+10
1/10.B=1-(9/10101+10)
vì(10101+10)>(10100+1)=> 9/10101+10 < 9/10100+10 => 1-(9/10101+10) < 1-(9/10100+10)
hay 1/10.A<1/10.B
=>A<B
Áp dụng bất đẳng thức :
\(\dfrac{a}{b}< \dfrac{a+m}{b+m}\)
Ta có :
\(A=\dfrac{10^{101}-1}{10^{102}-1}< \dfrac{10^{101}-1+11}{10^{102}-1+11}=\dfrac{10^{101}+10}{10^{102}+10}=\dfrac{10\left(10^{100}+1\right)}{10\left(10^{101}+1\right)}=\dfrac{10^{100}+1}{10^{101}+1}=B\)
\(\Leftrightarrow A< B\)
Ta có:
\(1-A=1-\dfrac{10^{101}-1}{10^{102}-1}=\dfrac{10^{102}-1\left(10^{101}-1\right)}{10^{102}-1}\) \(=\dfrac{10^{102}-1-10^{101}+1}{10^{102}-2}=\dfrac{10^{102}-10^{101}}{10^{102}-1}\)
\(=\dfrac{10^{101}\left(10-1\right)}{10^{101}\left(10-\dfrac{1}{10^{101}}\right)}=\dfrac{10-1}{10-\dfrac{1}{10^{101}}}=\dfrac{9}{10-\dfrac{1}{10^{101}}}\)\(\left(1\right)\)
\(1-B=1-\dfrac{10^{100}+1}{10^{101}+1}=\dfrac{10^{101}+1-\left(10^{100}+1\right)}{10^{101}+1}\)
\(=\dfrac{10^{101}+1-10^{100}-1}{10^{101}+1}\) \(=\dfrac{10^{101}-10^{100}}{10^{101}+1}=\dfrac{10^{100}\left(10-1\right)}{10^{100}\left(10+\dfrac{1}{10^{100}}\right)}\)
\(=\dfrac{10-1}{10+\dfrac{1}{10^{100}}}=\dfrac{9}{10+\dfrac{1}{100}}\)\(\left(2\right)\)
\(Từ\left(1\right);\left(2\right)\) \(=>A< B\)\(\left(đpcm\right)\)
CHÚC BẠN HỌC TỐT
M=\(\dfrac{10^{100^{ }}+1}{10^{101}+1}\)
M=\(\dfrac{10^{99+1}+1}{10^{100+1}+1}\)
M=\(\dfrac{10^{99}.10+1}{10^{100}.10+1}\)
N=\(\dfrac{10^{99^{ }}+1}{10^{100}+1}\)
=>M lớn hơn N
M>N,vì:\(\dfrac{10^{100}+1}{10^{101}+1}=\dfrac{10^{100}}{10^{101}}\)
\(\dfrac{10^{99}+1}{10^{100}+1}=\dfrac{10^{99}}{10^{100}}\)
\(\dfrac{10^{100}}{10^{101}}>\dfrac{10^{99}}{10^{100}}\)
a: \(\dfrac{4^5\cdot9^4-2\cdot6^9}{2^{10}\cdot3^8+6^8\cdot20}\)
\(=\dfrac{2^{10}\cdot3^8-2\cdot2^9\cdot3^9}{2^{10}\cdot3^8+2^8\cdot3^8\cdot2^2\cdot5}\)
\(=\dfrac{2^{10}\cdot3^8-2^{10}\cdot3^9}{2^{10}\cdot3^8+2^{10}\cdot3^8\cdot5}\)
\(=\dfrac{2^{10}\cdot3^8\left(1-3\right)}{2^{10}\cdot3^8\left(1+5\right)}=\dfrac{-2}{6}=-\dfrac{1}{3}\)
Ta có:
\(M=\dfrac{100^{100}+1}{100^{99}+1}\)
\(\Rightarrow\dfrac{M}{100}=\dfrac{100^{100}+1}{100\cdot\left(100^{99}+1\right)}\)
\(\Rightarrow\dfrac{M}{100}=\dfrac{100^{100}+1}{100^{100}+100}\)
\(\Rightarrow\dfrac{M}{100}=1-\dfrac{99}{100^{100}+100}\)
\(N=\dfrac{100^{101}+1}{100^{100}+1}\)
\(\Rightarrow\dfrac{N}{100}=\dfrac{100^{101}+1}{100\cdot\left(100^{100}+1\right)}\)
\(\Rightarrow\dfrac{N}{100}=\dfrac{100^{101}+1}{100^{101}+100}\)
\(\Rightarrow\dfrac{N}{100}=1-\dfrac{99}{100^{101}+100}\)
Mà: \(100^{101}>100^{100}\)
\(\Rightarrow100^{101}+100>100^{100}+100\)
\(\Rightarrow\dfrac{99}{100^{101}+100}< \dfrac{99}{100^{100}+100}\)
\(\Rightarrow1-\dfrac{99}{101^{101}+100}< 1-\dfrac{99}{100^{100}+100}\)
\(\Rightarrow\dfrac{N}{100}< \dfrac{M}{100}\)
\(\Rightarrow N< M\)
\(A=\dfrac{10^{99}+1}{10^{100}+1}\)
\(\Leftrightarrow10A=\dfrac{10\left(10^{99}+1\right)}{10^{100}+1}\)
\(\Leftrightarrow10A=\dfrac{10^{100}+10}{10^{100}+1}=\dfrac{10^{100}+1+9}{10^{100}+1}=1+\dfrac{9}{10^{100}+1}\)
\(B=\dfrac{10^{100}+1}{10^{101}+1}\)
\(\Leftrightarrow10B=\dfrac{10\left(10^{100}+1\right)}{10^{101}+1}\)
\(\Leftrightarrow10B=\dfrac{10^{101}+10}{10^{101}+1}=\dfrac{10^{101}+1+9}{10^{101}+1}=1+\dfrac{9}{10^{101}+1}\)
Do \(\dfrac{9}{10^{100}+1}>\dfrac{9}{10^{101}+1}\) nên \(10A>10B\)
\(\Rightarrow A>B\)
Áp dụng tính chất:
\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+m}{b+m}< 1\left(m\in N\right)\)
\(B=\dfrac{10^{100}+1}{10^{101}+1}< 1\)
\(B< \dfrac{10^{100}+1+9}{10^{101}+1+9}\)
\(B< \dfrac{10^{100}+10}{10^{101}+10}\)
\(B< \dfrac{10\left(10^{99}+1\right)}{10\left(10^{100}+1\right)}\)
\(B< \dfrac{10^{99}+1}{10^{100}+1}=A\)
\(B< A\)