\(\dfrac{10^{100}+1}{10^{99} +1}\) và B=\(\dfrac{10^{101}+...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 2 2023

ta có:

1/10.A=10100+1/10(1099+1)

1/10.A=10100+1/10100+10

1/10.A=1-(9/10100+10)

 

1/10.B=10101+1/10(10100+1)

1/10.B=10101+1/10101+10

1/10.B=1-(9/10101+10)

vì(10101+10)>(10100+1)=>  9/10101+10 < 9/10100+10 => 1-(9/10101+10) > 1-(9/10100+10)

hay 1/10.A>1/10.B

=>A>B

9 tháng 2 2023

ta có:

1/10.A=10100+1/10(1099+1)

1/10.A=10100+1/10100+10

1/10.A=1-(9/10100+10)

1/10.B=10101+1/10(10100+1)

1/10.B=10101+1/10101+10

1/10.B=1-(9/10101+10)

vì(10101+10)>(10100+1)=>  9/10101+10 < 9/10100+10 => 1-(9/10101+10) < 1-(9/10100+10)

hay 1/10.A<1/10.B

=>A<B

6 tháng 9 2017

M=\(\dfrac{10^{100^{ }}+1}{10^{101}+1}\)

M=\(\dfrac{10^{99+1}+1}{10^{100+1}+1}\)

M=\(\dfrac{10^{99}.10+1}{10^{100}.10+1}\)

N=\(\dfrac{10^{99^{ }}+1}{10^{100}+1}\)

=>M lớn hơn N

6 tháng 9 2017

M>N,vì:\(\dfrac{10^{100}+1}{10^{101}+1}=\dfrac{10^{100}}{10^{101}}\)

\(\dfrac{10^{99}+1}{10^{100}+1}=\dfrac{10^{99}}{10^{100}}\)

\(\dfrac{10^{100}}{10^{101}}>\dfrac{10^{99}}{10^{100}}\)

12 tháng 7 2017

Nếu:

\(\dfrac{a}{b}< 1\Rightarrow\dfrac{a+n}{b+n}< 1\left(n\in N\right)\)

\(B=\dfrac{10^{20}+1}{10^{21}+1}< 1\)

\(B< \dfrac{10^{20}+1+9}{10^{21}+1+9}\Rightarrow B< \dfrac{10^{20}+10}{10^{21}+10}\Rightarrow B< \dfrac{10\left(10^{19}+1\right)}{10\left(10^{20}+1\right)}\Rightarrow B< \dfrac{10^{19}+1}{10^{20}+1}=A\)\(\Rightarrow B< A\)

2 tháng 4 2018

Trước hết ta hãy so sánh :

\(\dfrac{10^{100}+1}{10^{101}+1}\)với \(\dfrac{10^{100}+1}{10^{102}+1}\)

Ta có: Cả hai phân số trên cùng tử.

\(\Rightarrow\dfrac{10^{100}+1}{10^{101}+1}>\dfrac{10^{100}+1}{10^{102}+1}\)

Tiếp đó so sánh : \(\dfrac{10^{101}+1}{10^{102}+1}\)với \(1\)

Ta được: \(\dfrac{10^{101}+1}{10^{102}+1}< 1\)

Ta lại so sánh được:\(\dfrac{10^{100}+1}{10^{102}+1}< 1\) (*)

Từ (*) suy ra \(\dfrac{10^{100}+1}{10^{101}+1}< \dfrac{10^{101}+1}{10^{102}+2}< \dfrac{10^{101}+1}{10^{102}+1}< 1\Rightarrow\dfrac{10^{100}+1}{10^{101}+1}< \dfrac{10^{101}+1}{10^{102}+1}\)

Ngoài ra còn một cách như sau:

\(\dfrac{10^{101}+1}{10^{102}+1}=\dfrac{10^{\left(100+1\right)}+1}{10^{\left(101+1\right)}+1}=\dfrac{10}{10}.\dfrac{10^{100}+1}{10^{101}+1}>\dfrac{10^{100}+1}{10^{101}+1}\) hay B > A hay A < B

3 tháng 4 2018

Bài 1:

d)

\(\dfrac{x+5}{95}+\dfrac{x+10}{90}+\dfrac{x+15}{85}+\dfrac{x+20}{80}=-4\)

\(\Leftrightarrow\dfrac{x+5}{95}+1+\dfrac{x+10}{90}+1+\dfrac{x+15}{85}+1+\dfrac{x+20}{80}+1=-4+1+1+1+1\)

\(\Leftrightarrow\dfrac{x+100}{95}+\dfrac{x+100}{90}+\dfrac{x+100}{85}+\dfrac{x+100}{80}=0\)

\(\Leftrightarrow\left(x+100\right)\left(\dfrac{1}{95}+\dfrac{1}{90}+\dfrac{1}{85}+\dfrac{1}{80}\right)=0\)

\(\Leftrightarrow x+100=0\) ( vì: \(\dfrac{1}{95}+\dfrac{1}{90}+\dfrac{1}{85}+\dfrac{1}{80}\ne0\))

\(\Leftrightarrow x=-100\)

18 tháng 7 2017

\(B=\dfrac{9}{10!}+\dfrac{10}{11!}+...........+\dfrac{99}{100!}\)

Ta thấy :

\(\dfrac{9}{10!}=\dfrac{10-1}{10!}=\dfrac{1}{9!}-\dfrac{1}{10!}\)

\(\dfrac{10}{11!}< \dfrac{11-1}{11!}=\dfrac{1}{10!}-\dfrac{1}{11!}\)

..........................

\(\dfrac{99}{100!}< \dfrac{100-1}{100!}=\dfrac{1}{99!}-\dfrac{1}{100!}\)

\(\Leftrightarrow B< \dfrac{1}{9!}-\dfrac{1}{10!}+\dfrac{1}{10!}-\dfrac{1}{11!}+...........+\dfrac{1}{99!}-\dfrac{1}{100!}\)

\(\Leftrightarrow B< \dfrac{1}{9!}-\dfrac{1}{100!}\)

\(\Leftrightarrow B< \dfrac{1}{9!}\rightarrowđpcm\)

18 tháng 7 2017

ban hang lam sai dau cho ta thay hay sao y

12 tháng 5 2017

Ta có :

\(A=\dfrac{100^{10}+1}{100^{10}-1}=\dfrac{100^{10}-1+2}{100^{10}-1}=\dfrac{100^{10}-1}{100^{10}-1}+\dfrac{2}{100^{10}-1}=1+\dfrac{2}{100^{10}-1}\)

\(B=\dfrac{100^{10}-1}{100^{10}-3}=\dfrac{100^{10}-3+2}{100^{10}-3}=\dfrac{100^{10}-3}{100^{10}-3}+\dfrac{2}{100^{10}-3}=1+\dfrac{2}{100^{10}-3}\)

\(\)\(1+\dfrac{2}{100^{10}-1}< 1+\dfrac{2}{100^{10}-3}\Rightarrow A< B\)

12 tháng 5 2017

good

9: \(=1-\dfrac{1}{99}+1-\dfrac{1}{100}+\dfrac{100}{101}\cdot\dfrac{1-4+3}{12}=2-\dfrac{199}{9900}=\dfrac{19601}{9900}\)

10: \(=\left(\dfrac{78}{79}+\dfrac{79}{80}+\dfrac{80}{81}\right)\cdot\dfrac{6+5+9-20}{30}=0\)

Ta có A = \(\frac{10^{100}-1}{10^{98}-1}=\frac{10^{98}.10^2-10^2+99}{10^{98}-1}\)

                                       \(=\frac{10^2\left(10^{98}-1\right)+99}{10^{98-1}}\)

                                        \(=10^2+\frac{99}{10^{98}-1}\)

        B= \(\frac{10^{101}-1}{10^{99}-1}=\frac{10^{99}.10^2-10^2+99}{10^{99}-1}\)

                                     \(=\frac{10^2\left(10^{99}-1\right)+99}{10^{99}-1}\)

                                       \(=10^2+\frac{99}{10^{99}-1}\)

  Vì \(\frac{99}{10^{98}-1}>\frac{99}{10^{99}-1}\)nên \(10^2+\frac{99}{10^{98}-1}>10^2+\frac{99}{10^{99}-1}\)=> A > B

                                     Vậy A > B

25 tháng 4 2018

\(\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\)

= \(\dfrac{2}{2}.\left(\dfrac{3}{5.7}+\dfrac{3}{7.9}+...+\dfrac{3}{59.61}\right)\)

= \(\dfrac{3}{2}.\left(\dfrac{2}{5.7}+\dfrac{2}{7.9}+...+\dfrac{2}{59.61}\right)\)

= \(\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+...+\dfrac{1}{59}-\dfrac{1}{61}\right)\)

= \(\dfrac{3}{2}.\left(\dfrac{1}{5}-\dfrac{1}{61}\right)\)

=\(\dfrac{3}{2}.\dfrac{56}{305}\)

= \(\dfrac{78}{305}\)

25 tháng 4 2018

\(\left(x^2-4\right)\left(6-2x\right)=0\)\(x^2-4=0\) hoặc \(6-2x=0\)

*Nếu \(x^2-4=0\)

⇒ x2 = 4

⇒ x ∈ {2 ; -2}

*Nếu \(6-2x=0\)

⇒2x = 6

⇒ x = 6 : 2 = 3

Vậy x ∈ { -2 ; 2 ; 3 }

1 tháng 8 2017

c) E = \(\dfrac{4116-14}{10290-35}\) và K = \(\dfrac{2929-101}{2.1919+404}\)

E = \(\dfrac{4116-14}{10290-35}\)

E = \(\dfrac{14.\left(294-1\right)}{35.\left(294-1\right)}\)

E = \(\dfrac{14}{35}\)

K = \(\dfrac{2929-101}{2.1919+404}\)

K = \(\dfrac{101.\left(29-1\right)}{101.\left(38+4\right)}\)

K = \(\dfrac{29-1}{34+8}\)

K = \(\dfrac{28}{42}\) = \(\dfrac{2}{3}\)

Ta có : E = \(\dfrac{14}{35}\) và K = \(\dfrac{2}{3}\)

\(\dfrac{14}{35}\) = \(\dfrac{42}{105}\)

\(\dfrac{2}{3}\) = \(\dfrac{70}{105}\)

Vậy E < K

Các câu còn lại tương tự

15 tháng 5 2018

a) Giải

Đặt \(M=\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\)

\(\Rightarrow A< A.M\)

hay \(A< \left(\dfrac{1}{2}.\dfrac{3}{4}.\dfrac{5}{6}...\dfrac{99}{100}\right).\left(\dfrac{2}{3}.\dfrac{4}{5}.\dfrac{6}{7}...\dfrac{98}{99}\right)\)

\(\Rightarrow A< \dfrac{1}{2}.\dfrac{2}{3}.\dfrac{3}{4}.\dfrac{4}{5}.\dfrac{5}{6}.\dfrac{6}{7}...\dfrac{98}{99}.\dfrac{99}{100}\)

\(\Leftrightarrow A< \dfrac{1.2.3.4.5.6...98.99}{2.3.4.5.6.7...99.100}\)

\(\Rightarrow A< \dfrac{1}{100}< \dfrac{1}{10}\)

Vậy \(A< \dfrac{1}{10}\)