Cho S=\(1-3+3^2-3^3+...+3^{98}-3^{99}\)
a, CMR: S là bội của -20
b,Tính S từ đó suy ra \(3^{100}\) chia cho 4 dư 1
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
S=-2+3^2(1-3)+.......3^98(1-3)=-2+3^2.(-2)......3^98.(-2)= -2(1+3^2+3^4+......3^98) bên trong ngoặc là tổng có quy luật.
b ) mình đang ngĩ . mình làm ý a nha
S = ( 1 - 3 + 32 - 33 ) + ( 34 - 35 + 36 - 37 ) + .... + ( 396 - 397 + 398 - 399 )
= ( 1 - 3 + 32 - 33 ) + 34 ( 1 - 3 + 32 - 33 ) + .... + 396 ( 1 - 3 + 32 - 33 )
= ( 1 - 3 + 9 - 27 ) + 34 ( 1 - 3 + 9 - 27 ) + ... + 396 ( 1 - 3 + 9 - 27 )
= - 20 + 34 ( - 20 ) + .... + 396 ( - 20 )
= - 20( 1 + 34 + .... + 396 ) chia hết cho - 20 ( đpcm )
a)
(1-3+3^2-3^3)+(3^4-3^5+3^6-3^7)+...+(3^96-3^97+3^98-3^99)
=(-20)+[3^4(1-3+3^2-3^3)]+...+[3^96(1-3+3^2-3^3)
=(-20)(3^4+...+3^96)
Vay S la boi cua (-20)
b)?
a,S=(1-3+32-33)+......+(396-397+398-399)
S=(-20)+...........+396.(1-3+32-33)
S=(-20)+..........+396.(-20)
S=(1+34+...........+396).(-20) chia hết cho (-20){đpcm}
b,3S=3-32+33-34+...........+399-3100
3S+S=4S=1-3100
S=\(\frac{1-3^{100}}{4}\)
Mà S chia hết cho (-20) nên S chia hết cho 4
=>1-3100 chia hết cho 4
Do 1 chia 4 dư 1 nên 3100 chia 4 dư 1
=>đpcm
a) S=\(1-3+3^2-3^3+...+3^{98}-3^{99}.\)
=\((1-3+3^2-3^3)+...+3^{96}-3^{97}+3^{98}-3^{99}.\)
=\(\left(1-3+3^2-3^3\right)+..+3^{96}\left(1-3+3^2-3^3\right)\)
=(\(1-3+3^2-3^3\))(1+\(3^4+...+3^{92}+3^{96})\)
=-20(1+\(3^4+...+3^{92}+3^{96})\)là bội của -20
Cậu tính ra S có bao nhiêu số hạng rồi vì Scó 100 số hạng.Mà S chia hết cho bốn rồi nhóm bốn số hạn của S vào nhau
a)S=1-3+32-...+398-399
=(1-3+32-33)+...+(396-397+398-399)
=-20+...+396.(-20)
=-20.(1+....+396) là bội của -20(ĐPCM)
b)S=1-3+32-...+398-399 (1)
=>3S=3-32+33+...+399-3100(2)
Từ 1 và 2 =>4S=1-3100
Do S chia hết cho -20 =>4S chia hết cho -20=>4S chia hết cho 4=>1-3100 chia hết cho 4
=>3100 chia 4 dư 1
a. Ta có :
\(S=1-3+3^2-3^3+..........+3^{98}-3^{99}\)
\(=\left(1-3+3^2-3^3\right)+............+\left(3^{96}-3^{97}+3^{98}-3^{99}\right)\)
\(=1\left(1-3+3^2-3^3\right)+............+3^{96}\left(1-3+3^2-3^3\right)\)
\(=1.\left(-20\right)+..........+3^{96}\left(-20\right)\)
\(=\left(-20\right)\left(1+......+3^{96}\right)⋮-20\)
\(\Leftrightarrow S\) là \(B\left(-20\right)\)
b. Ta có :
\(S=1-3+3^2-3^3+............+3^{98}-3^{99}\)
\(\Leftrightarrow3S=3-3^2+3^3-3^4+...............+3^{99}-3^{100}\)
\(\Leftrightarrow3S+S=\left(3-3^2+3^3-......-3^{100}\right)+\left(1-3+.....+3^{98}-3^{99}\right)\)
\(\Leftrightarrow4S=1-3^{100}\)
\(\Leftrightarrow S=\dfrac{1-3^{100}}{4}\)
Mà \(S\in B\left(-20\right)\Leftrightarrow S\in Z\)
\(\Leftrightarrow1-3^{100}⋮4\)
Hay \(3^{100}-1⋮4\)
\(\Leftrightarrow3^{100}:4\left(dư1\right)\rightarrowđpcm\)