tìm GTNN hoặc GTLN của bt:
P= 9x^2 +12x-5
Q= 2x2 +8xy +16x2 +4x-15
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
P= 9x^2 + 12x -5
= (3x)^2 + 2.3.2x + 4 -4 -5
=(9x^2 + 2.3.2x + 4) -9
= (3x+2)^2 -9
min p = -9 => (3x+2)^2 = 0
=> x= -2/3
max p = -9 => x= -2/3
\(a,x^2+2x+7\)
\(=x^2+2x+1+6\)
\(=\left(x+1\right)^2+6\)
\(V\text{ì}\left(x+1\right)^2\ge0\)
\(\left(x+1\right)^2+6\ge0+6\)
\(\left(x+1\right)^2+6\ge6\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+1\right)^2=0\)
\(x+1=0\)
\(x=-1\)
Vậy MinA=6 khi x=-1
b) \(x^2+x+1\)
\(=x^2+2.\dfrac{1}{2}x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\)
Vì \(\left(x+\dfrac{1}{2}\right)^2\ge0\)
\(\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}\)
Dấu "=" xảy ra \(\Leftrightarrow\left(x+\dfrac{1}{2}\right)^2=0\)
\(x=\dfrac{1}{2}\)
Bài 1:
a. $M=x^2+4x+9=(x^2+4x+4)+5=(x+2)^2+5\geq 0+5=5$ do $(x+2)^2\geq 0$ với mọi $x$
Vậy $M_{\min}=5$. Giá trị này đạt tại $x+2=0\Leftrightarrow x=-2$
b.
$N=x^2-20x+101=(x^2-20x+10^2)+1=(x-10)^2+1\geq 1$ do $(x-10)^2\geq 0$ với mọi $x$
Vậy $N_{\min}=1$. Giá trị này đạt tại $x-10=0\Leftrightarrow x=10$
Bài 2:
a.
$C=-y^2+6y-15$
$-C=y^2-6y+15=(y^2-6y+9)+6=(y-3)^2+6\geq 6$ (do $(y-3)^2\geq 0$ với mọi $y$)
$\Rightarrow C\leq -6$
Vậy $C_{\max}=-6$. Giá trị này đạt tại $y-3=0\Leftrightarrow y=3$
b.
$-B=x^2-9x+12=(x^2-9x+4,5^2)-8,25=(x-4,5)^2-8,25\geq -8,25$ do $(x-4,5)^2\geq 0$ với mọi $x$
$\Rightarrow B\leq 8,25$
Vậy $B_{\max}=8,25$. Giá trị này đạt tại $x-4,5=0\Leftrightarrow x=4,5$
1)
a) \(M=\)\(x^2\)\(+\)\(4x\)\(+\)\(9\)
\(=\)\(x^2\)\(+\)\(2x\)\(.\)\(2\)\(+\)\(4\)\(+\)\(5\)
\(=\left(x+2\right)^2\)\(+\)\(5\)\(>;=\)\(5\)
Dấu bằng xảy ra khi x + 2 = 0
x = -2
Vậy GTNN của M bằng 5 khi x = -2
b) \(N=\)\(x^2\)\(-\)\(20x\)\(+\)\(101\)
\(=\)\(x^2\)\(-\)\(2x\)\(.\)\(10\)\(+\)\(100\)\(+\)\(1\)
\(=\)\(\left(x-10\right)^2\)\(+\)\(1\)\(>;=\)\(1\)
Dấu bằng xảy ra khi x - 10 = 0
x = 10
Vậy GTNN của N bằng 1 khi x = 10
2)
a) \(C=\)\(-y^2\)\(+\)\(6y\)\(-\)\(15\)
\(=\)\(-y^2\)\(+\)\(2y\)\(.\)\(3\)\(-\)\(9\)\(-\)\(6\)
\(=\)\(-\left(y-3\right)^2\)\(-\)\(6\)\(< ;=\)\(6\)
Dấu bằng xảy ra khi y - 3 = 0
y = 3
Vậy GTLN của C bằng -6 khi y = 3
b) \(B=\)\(-x^2\)\(+\)\(9x\)\(-\)\(12\)
\(=\)\(-x^2\)\(+\)\(2x\)\(.\)\(\frac{9}{2}\)\(-\)\(\frac{81}{4}\)\(+\)\(\frac{81}{4}\)\(-\)\(12\)
\(=\)\(-\left(x-\frac{9}{2}\right)^2\)\(+\)\(\frac{33}{4}\)\(< ;=\)\(\frac{33}{4}\)
Dấu bằng xảy ra khi \(x-\frac{9}{2}=0\)
\(x=\frac{9}{2}\)
Vậy GTLN của B bằng \(\frac{33}{4}\)khi x = \(\frac{9}{2}\)
a) M = x2 + 4x + 9 = x2 + 4x + 4 + 5 = (x + 2)2 + 5
Vì : \(\left(x+2\right)^2\ge0\forall x\in R\)
Nên M = (x + 2)2 + 5 \(\ge5\forall x\in R\)
Vậy Mmin = 5 khi x = -2
b) N = x2 - 20x + 101 = x2 - 20x + 100 + 1 = (x - 10)2 + 1
Vì \(\left(x-10\right)^2\ge0\forall x\in R\)
Nên : N = (x - 10)2 + 1 \(\ge1\forall x\in R\)
Vậy Nmin = 1 khi x = 10
Bài 2 :
a) C = -y2 + 6y - 15 = -(y2 - 6y + 15) = -(y2 - 6y + 9 + 6) = -(y2 - 6y + 9) - 6 = -(y - 3)2 - 6
Vì \(-\left(y-3\right)^2\le0\forall x\in R\)
Nên : C = -(y - 3)2 - 6 \(\le-6\forall x\in R\)
Vậy Cmin = -6 khi y = 3
b) B = -x2 + 9x - 12 = -(x2 - 9x + 12) = -(x2 - 9x + \(\frac{81}{4}-\frac{33}{4}\)) = \(-\left(x-\frac{9}{2}\right)^2+\frac{33}{4}\)
Vì \(-\left(x-\frac{9}{2}\right)^2\le0\forall x\in R\)
Nên : B = \(-\left(x-\frac{9}{2}\right)^2+\frac{33}{4}\) \(\le\frac{33}{4}\forall x\in R\)
Vậy Bmin = \(\frac{33}{4}\) khi \(x=\frac{9}{2}\)
\(A=-9x^2-12x+4\)
\(=-\left[\left(3x\right)^2+2\times3x\times2+2^2-2^2-4\right]\)
\(=-\left[\left(3x+2\right)^2-8\right]\)
\(\left(3x+2\right)^2\ge0\)
\(\left(3x+2\right)^2-8\ge-8\)
\(-\left[\left(3x+2\right)^2-8\right]\le8\)
Vậy Max A = 8 khi x = \(-\frac{2}{3}\)
\(A=-9x^2-12x+4=-\left(9x^2+12x-4\right)=-\left[\left(3x\right)^2+2.2.3x+2^2-8\right]\)
\(=-\left[\left(3x+2\right)^2-8\right]=-\left(3x+2\right)^2+8\)
Do \(\left(3x+2\right)^2\ge0\Rightarrow-\left(3x+2\right)^2\le0\Rightarrow-\left(3x+2\right)^2+8\le8\)
Đẳng thức xảy ra khi: \(3x+2=0\Rightarrow x=\frac{-2}{3}\)
Vậy giá trị lớn nhất của \(-9x^2-12x+4\)là 8 khi \(x=\frac{-2}{3}\)
\(B=9x^2-12x=\left(9x^2-12x+4\right)-4=\left(3x-2\right)^2-4\ge-4\)Vậy \(Min_B=-4\) khi \(3x-2=0\Rightarrow3x=2\Rightarrow x=\dfrac{2}{3}\)
\(D=3-10x^2-4xy-4y^2=3-\left(3x\right)^2-\left(x^2+4xy+4y^2\right)=3-\left(3x\right)^2-\left(x+2y\right)^2\le3\)Vậy \(Max_D=3\) khi \(\left[{}\begin{matrix}3x=0\\x+2y=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\2y=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=0\\y=0\end{matrix}\right.\)
D=2x2+4x-21
=2x2+4x+2-23
=2.(x2+2x+1)-23
=2.(x+1)2-23
ta có 2.(x+1)2\(\ge\)0
nên 2.(x+1)2-23\(\ge\)-23
Dấu "=" xảy ra khi:
x+1=0
x=-1
vậy GTNN của D là -23 tại x=-1
\(P=9x^2+12x-5\)
\(=9x^2+12x+4-9\)
\(=\left(3x+2\right)^2-9\ge-9\)
Dấu " = " khi \(\left(3x+2\right)^2=0\Leftrightarrow x=\dfrac{-2}{3}\)
Vậy \(MIN_P=-9\) khi \(x=\dfrac{-2}{3}\)
b, sai đề