Số giá trị nguên của n để biểu thức B = 6n + 5 / 2n - 1 có giá trị là 1 số nguyên.
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
De \(\frac{6n+5}{2n-1}\)\(\in Z\)
=> 6n+5 chia het cho 2n-1
=> 6n-3+8 chia het cho 2n-1
=> 3(2n-1)+8 chia het cho 2n-1
=> 8 chia het cho 2n-1
=> 2n-1=-1;1;-2;2;-4;4;-8;8
Vi 2n-1 la so le
=> 2n-1=-1;1
=> 2n=0;2
=> n=0;1
Để A là số nguyên thì 2n^2-n+4n-2+5 chia hết cho 2n-1
=>\(2n-1\in\left\{1;-1;5;-5\right\}\)
=>\(n\in\left\{1;0;3;-2\right\}\)
`2n^2+3n+3 | 2n-1`
`-` `2n^2-n` `n+2`
------------------
`4n+3`
`-` `4n-2`
------------
`5`
`<=> (2n^2+3n+3) : (2n-1)=5`
`<=> 5 ⋮ (2n-1)=> 2n-1 ∈ Ư(5)`\(=\left\{1,5\right\}\)
`+, 2n-1=1=>2n=2=>n=1`
`+, 2n-1=-1=>2n=0=>n=0`
`+, 2n-1=5=>2n=6=>n=3`
`+,2n-1=-5=>2n=-4=>n=-2`
vậy \(n\in\left\{1;0;3;-2\right\}\)
a)B=3(n+1)/n+1 - 3/n+1
=3 - 3/n+1
để B nguyên thì n+1 thuộc ước của 3 (1;3)
suy ra n =(0;2)
câu b tương tự
\(N=\frac{6n+5}{2n-1}=\frac{6n-3+8}{2n-1}=3+\frac{8}{2n-1}\inℤ\Leftrightarrow\frac{8}{2n-1}\inℤ\)
mà \(n\)là số nguyên nên \(2n-1\inƯ\left(8\right)\)mà \(2n-1\)là số lẻ nên
\(2n-1\in\left\{-1,1\right\}\Leftrightarrow n\in\left\{0,1\right\}\).