Phân tich da thuc thanh nhan tu
a)\(yz\left(y+z\right)+xz\left(z-x\right)-xy\left(x+y\right)\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có (x^2 + y^2 )^3 + (z^2 – x^2 )^3 – (y^2 + z^2 )^3
= (x^2 + y^2 )^3 + (z^2 – x^2 )^3 + (-y^2 - z^2 )^3
Ta thấy x^2 + y^2 + z^2 – x^2 – y^2 – z^2 = 0
=> áp dụng nhận xét ta có: (x^2+y^2 )^3+ (z^2 -x^2 )^3 -y^2 -z^2 )^3
= 3(x^2 + y^2 ) (z^2 –x^2 ) (-y^2 – z^2 )
= 3(x^2+y^2 ) (x+z)(x-z)(y^2+z^2 )
thay 1=x+y+z vào nhá , ví dụ x=x(x+y+z) rồi phân tích đa thức thành nhân tử!
thay 1=x+y+z vào nhá , ví dụ x=x(x+y+z) rồi phân tích đa thức thành nhân tử!
Xem lại cái đề đi Tuyển. Hình như giá trị nhỏ nhất của cái biểu thức dưới còn lớn hơn là 1 thì làm sao bài đó có giá trị x, y, z thỏa được mà bảo tính A.
\(\left(x+y+z\right)\left(xy+yz+xz\right)-xyz=xy\left(x+y+z\right)-xyz+\left(yz+xz\right)\left(x+y+z\right)\)
\(=xy\left(x+y+z-z\right)+z\left(x+y\right)\left(x+y+z\right)\)
\(=xy\left(x+y\right)+z\left(x+y\right)\left(x+y+z\right)\)
\(=\left(x+y\right)\left[xy+z\left(x+y+z\right)\right]\)
\(=\left(x+y\right)\left(xy+xz+yz+z^2\right)\)
\(=\left(x+y\right)\left[x\left(y+z\right)+z\left(y+z\right)\right]\)
\(=\left(x+y\right)\left(y+z\right)\left(x+z\right)\)
(x -y)3 - 1 - 3(x -y)(x - y - 1)
= (x -y)3 - 3(x -y)(x - y - 1) - 1
Đặt x - y = t, khi đó ta có:
t3 - 3t. (t - 1) - 1
= t3 - 3t2 + 3t - 1
= (t - 1)3
Thay t = x - y vào (t - 1)3 , ta có: ( x - y - 1)3
Vậy (x -y)3 - 1 - 3(x -y)(x - y - 1) = ( x - y - 1)3
a) xy(x + y) + yz(y + z) + xz(z + x) + 3xyz
= xy(X + y + z) + yz(x + y + z) + xz(X + y + z)
= (x + y +z)(xy + yz+ xz)
b) xy(x + y) - yz(y + z) - xz(z - x)
= x2y + xy2 - y2z - yz2 - xz2 + x2z
= x2(y + z) - yz(y + z) + x(y2 - z2)
= x2(y + z) - yz(y + z) + x(y + z)(y - z)
= (y + z)(x2 - yz + xy - xz)
= (y + z)[x(x + y) - z(x + y)]
= (y + z)(x + y)(x - z)
c) x(y2 - z2) + y(z2 - x2) + z(x2 - y2)
= x(y - z)(y + z) + yz2 - yx2 + x2z - y2z
= x(y - z)(y + z) - yz(y - z) - x2(y - z)
= (y - z)((xy + xz - yz - x2)
= (y - z)[x(y - x) - z(y - x)]
= (y - z)(x - z)(y -x)
\(yz\left(y+z\right)+xz\left(z-x\right)-xy\left(x+y\right)\)
\(=-[xy(x+y)-yz(y+z)-zx(z-x)]\)
\(=-(y.[x(x+y)-z(y+z)]-zx(z-x))\)
\(=-[y.(x^2+xy-zy-z^2)-zx(z-x)]\)
\(=-[y.(x^2-z^2+xy-zy)-zx(z-x)]\)
\(=-(y.[(x+z)(x-z)+y.(x-z)]-zx(z-x))\)
\(=-[y.(x-z)(x+z+y)+zx(x-z)]\)
\(=[(x-z)[y(x+z+y)+zx]]\)
\(=-(x-z)(yx+yz+y2+zx)\)
\(=-(x-z)(yx+zx+yz+y2)\)
\(=-[(x-z)[x.(y+z)+y.(y+z)]]\)
\(=-(x-z)(y+z)(x+y)\)