K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 7 2017

Giải:

\(\dfrac{1}{99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-\dfrac{1}{97.96}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

\(=\dfrac{1}{99}-\left(\dfrac{1}{99.98}+\dfrac{1}{98.97}+\dfrac{1}{97.96}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)

\(=\dfrac{1}{99}-\left(\dfrac{1}{99}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{97}+\dfrac{1}{97}-\dfrac{1}{96}+...+\dfrac{1}{3}-\dfrac{1}{2}+\dfrac{1}{2}-1\right)\)

\(=\dfrac{1}{99}-\left(\dfrac{1}{99}-1\right)\)

\(=\dfrac{1}{99}-\dfrac{-98}{99}\)

\(=\dfrac{1}{99}+\dfrac{98}{99}\)

\(=\dfrac{99}{99}=1\)

Chúc bạn học tốt!

26 tháng 7 2017

\(\dfrac{1}{99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-\dfrac{1}{97.96}-...-\dfrac{1}{3.2}+\dfrac{1}{2.1}\)

=\(\dfrac{1}{99}-\dfrac{1}{99}+\dfrac{1}{98}-\dfrac{1}{98}-\dfrac{1}{98}+\dfrac{1}{97}-\dfrac{1}{97}+\dfrac{1}{96}-\dfrac{1}{96}+...+\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{2}+1\)

=\(0+1\)

=\(1\)

Bạn học tốt^^

=-1/99-(1-1/2+1/2-1/3+...+1/98-1/99)

=-2/99+1=97/99

2 tháng 8 2017

\(P=\dfrac{1}{99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

\(P=\dfrac{1}{99}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{97.98}+\dfrac{1}{98.99}\right)\)

\(P=\dfrac{1}{99}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{99}\right)\)

\(P=\dfrac{1}{99}-\left(1-\dfrac{1}{99}\right)\)

\(P=\dfrac{1}{99}-\dfrac{98}{99}=-\dfrac{97}{99}\)

Xong ! leuleu

1 tháng 6 2017

C= \(\dfrac{1}{100}-\)(\(\dfrac{1}{1.2}\)+\(\dfrac{1}{2.3}\)+...+\(\dfrac{1}{98.99}\)+\(\dfrac{1}{99.100}\)

\(=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

=\(\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\)

= \(\dfrac{1}{100}-\dfrac{99}{100}\)

=\(\dfrac{-98}{100}=-\dfrac{49}{50}\)

13 tháng 5 2017

Ta có:

\(=\dfrac{1}{100}-\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{99}+\dfrac{1}{98}-\dfrac{1}{98}+......+\dfrac{1}{3}-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{2}+1\)

sau khi giản ước ta được như sau:

=\(\dfrac{1}{100}-1\)=\(\dfrac{-99}{100}\)

20 tháng 9 2021

\(A=\dfrac{1}{100}-\dfrac{1}{100}+\dfrac{1}{99}-\dfrac{1}{99}+\dfrac{1}{98}-\dfrac{1}{98}+\dfrac{1}{97}-...-\dfrac{1}{3}+\dfrac{1}{2}-\dfrac{1}{2}+1\\ =\dfrac{1}{100}+1=\dfrac{101}{100}\)

20 tháng 9 2021

\(A=\dfrac{1}{100}-\dfrac{1}{100.99}-\dfrac{1}{99.98}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

\(A=\dfrac{1}{100}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\)

\(A=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(A=\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\)

\(A=\dfrac{1}{100}-\dfrac{99}{100}=\dfrac{-49}{50}\)

26 tháng 5 2022

\(A=\dfrac{1}{100}-\dfrac{1}{100.99}-...-\dfrac{1}{2.1}\\ =\dfrac{1}{100}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{99.100}\right)\\ =\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{99}-\dfrac{1}{100}\right)\\ =\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\\ =\dfrac{1}{100}-\dfrac{99}{100}\\ =\dfrac{-98}{100}\\ =-\dfrac{49}{100}\)

26 tháng 5 2022

\(A=\dfrac{1}{100}-\dfrac{1}{100.99}-\dfrac{1}{99.98}-\dfrac{1}{98.97}-...-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

\(=\dfrac{1}{100}-\left(\dfrac{1}{100.99}+\dfrac{1}{99.98}+\dfrac{1}{98.97}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)

\(=\dfrac{1}{100}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{97.98}+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)

\(=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\)

\(=-\dfrac{49}{50}\)

17 tháng 6 2017

a,\(\dfrac{1}{3}-\dfrac{3}{5}+\dfrac{5}{7}-\dfrac{7}{9}+\dfrac{9}{11}-\dfrac{11}{13}+\dfrac{13}{15}+\dfrac{11}{13}-\dfrac{9}{11}+\dfrac{7}{9}-\dfrac{5}{7}+\dfrac{3}{5}-\dfrac{1}{3}\)

\(=\left(\dfrac{1}{3}-\dfrac{1}{3}\right)+\left(-\dfrac{3}{5}+\dfrac{3}{5}\right)+.....+\left(-\dfrac{11}{13}+\dfrac{11}{13}\right)+\dfrac{13}{15}\)

\(=0+0+...0+0+\dfrac{13}{15}=\dfrac{13}{15}\)

câu b và c xem lại đề nha

Chúc bạn học tốt!!!

17 tháng 6 2017

Đề đúng mà bạn

30 tháng 10 2023

\(B=\dfrac{-1}{99}+\dfrac{1}{99\cdot98}-\dfrac{1}{98\cdot97}-...-\dfrac{1}{2\cdot1}\)

\(=\dfrac{-1}{99}+\dfrac{1}{98\cdot99}-\left(\dfrac{1}{1\cdot2}+\dfrac{1}{2\cdot3}+...+\dfrac{1}{97\cdot98}\right)\)

\(=-\dfrac{2}{99}+\dfrac{1}{98}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{97}-\dfrac{1}{98}\right)\)

\(=-\dfrac{2}{99}+\dfrac{1}{98}-\dfrac{97}{98}=\dfrac{-2}{99}-\dfrac{23}{49}=\dfrac{-2375}{4851}\)

AH
Akai Haruma
Giáo viên
7 tháng 9 2018

Lời giải:

Đặt \(A=\frac{1}{100.99}-\frac{1}{99.98}-\frac{1}{98.97}-....-\frac{1}{3.2}-\frac{1}{2.1}\)

\(\Rightarrow A+\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{97.98}+\frac{1}{98.99}=\frac{1}{99.100}\)

\(\Leftrightarrow A+\frac{2-1}{1.2}+\frac{3-2}{2.3}+...+\frac{98-97}{97.98}+\frac{99-98}{98.99}=\frac{1}{99.100}\)

\(\Leftrightarrow A+1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{97}-\frac{1}{98}=\frac{1}{99.100}\)

\(\Leftrightarrow A+1-\frac{1}{98}=\frac{1}{99.100}\Rightarrow A=\frac{1}{9900}-\frac{97}{98}\)

16 tháng 9 2017

a) \(A=\dfrac{1}{3}-\dfrac{3}{4}-\left(-\dfrac{3}{5}\right)+\dfrac{1}{72}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)

\(=\dfrac{1}{3}-\dfrac{3}{4}+\dfrac{3}{5}+\dfrac{1}{72}-\dfrac{2}{9}-\dfrac{1}{36}+\dfrac{1}{15}\)

\(=\left(\dfrac{1}{3}+\dfrac{3}{5}+\dfrac{1}{15}\right)-\left(\dfrac{3}{4}+\dfrac{2}{9}+\dfrac{1}{36}\right)+\dfrac{1}{72}\)

\(=\left(\dfrac{5}{15}+\dfrac{9}{15}+\dfrac{1}{15}\right)-\left(\dfrac{27}{36}+\dfrac{8}{36}+\dfrac{1}{36}\right)+\dfrac{1}{72}\)

\(=1-1+\dfrac{1}{72}\)

\(=0+\dfrac{1}{72}=\dfrac{1}{72}\)

b) \(B=\dfrac{1}{5}-\dfrac{3}{7}+\dfrac{5}{9}-\dfrac{2}{9}+\dfrac{7}{13}-\dfrac{2}{11}-\dfrac{5}{9}+\dfrac{3}{7}-\dfrac{1}{5}\)

\(=\left(\dfrac{1}{5}-\dfrac{1}{5}\right)+\left(-\dfrac{3}{7}+\dfrac{3}{7}\right)+\left(\dfrac{5}{9}-\dfrac{5}{9}\right)-\left(\dfrac{2}{9}-\dfrac{7}{13}+\dfrac{2}{11}\right)\)

\(=0+0+0-\left(\dfrac{286}{1287}-\dfrac{693}{1287}+\dfrac{234}{1287}\right)\)

\(=-\left(-\dfrac{173}{1287}\right)\)

\(=\dfrac{173}{1287}\)

c) \(C=\dfrac{1}{100}-\dfrac{1}{100.99}-\dfrac{1}{99.98}-.....-\dfrac{1}{3.2}-\dfrac{1}{2.1}\)

\(=\dfrac{1}{100}-\left(\dfrac{1}{100.99}+\dfrac{1}{99.98}+\dfrac{1}{98.97}+...+\dfrac{1}{3.2}+\dfrac{1}{2.1}\right)\)

\(=\dfrac{1}{100}-\left(\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{97.98}+\dfrac{1}{98.99}+\dfrac{1}{99.100}\right)\)

\(=\dfrac{1}{100}-\left(1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{97}-\dfrac{1}{98}+\dfrac{1}{98}-\dfrac{1}{99}+\dfrac{1}{99}-\dfrac{1}{100}\right)\)

\(=\dfrac{1}{100}-\left(1-\dfrac{1}{100}\right)\)

\(=\dfrac{-49}{50}\)