BT1: Tìm x, biết
3) \(x:\dfrac{1}{2}+x:\dfrac{1}{4}+x:\dfrac{1}{8}+...+x:\dfrac{1}{512}=511\)
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(x:\dfrac{1}{2}+x:\dfrac{1}{4}+x:\dfrac{1}{8}+...+x:\dfrac{1}{512}=511\)
\(\Rightarrow x\left(2+4+8+...+512\right)=511\)
\(\Rightarrow\dfrac{\left(512+2\right).255}{2}.x=511\)
\(\Rightarrow65535x=511\)
\(\Rightarrow x=\dfrac{511}{65535}\)
Vậy.................
\(x:\dfrac{1}{2}+x:\dfrac{1}{4}+x:\dfrac{1}{8}+...+x:\dfrac{1}{512}=511\)
\(\Rightarrow x.\left(2+4+8+...+512\right)=511\)
\(\Rightarrow\dfrac{\left(512+2\right).255}{2}.x=511\)
\(\Rightarrow65535x=511\)
\(\Rightarrow x=\dfrac{511}{65535}\)
Vậy \(x=\dfrac{511}{65535}\)
\(=\left(2+4+6+...+98\right)\left(6-6\right)\left(\dfrac{1}{2}+\dfrac{1}{4}+...+\dfrac{1}{512}\right)\)
=0
\(\Leftrightarrow\left(\dfrac{1}{2}x-\dfrac{1}{3}\right)^2+\dfrac{1}{4}=\dfrac{1}{2}\)
\(\Leftrightarrow\left(\dfrac{1}{2}x-\dfrac{1}{3}\right)^2=\dfrac{1}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{1}{2}x-\dfrac{1}{3}=\dfrac{1}{2}\\\dfrac{1}{2}x-\dfrac{1}{3}=-\dfrac{1}{2}\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{5}{3}\\x=-\dfrac{1}{3}\end{matrix}\right.\)
1: =>x=3/5-1/5=2/5
b: =>x/3=5/8+1/8=3/4
=>x=9/4
3: =>10/3x=3+1/4+6+3/4=10
=>x=10:10/3=3
\(\dfrac{1}{2}\)| \(\dfrac{1}{3}x\)- \(\dfrac{1}{4}\)| - \(\dfrac{1}{5}\)= \(\dfrac{1}{6}\)
=> \(\dfrac{1}{2}\)| \(\dfrac{1}{3}x\) - \(\dfrac{1}{4}\)| = \(\dfrac{11}{30}\)
=> | \(\dfrac{1}{3}x\)- \(\dfrac{1}{4}\)| = \(\dfrac{11}{15}\)
=> \(\left[{}\begin{matrix}\dfrac{1}{3}x-\dfrac{1}{4}=\dfrac{11}{15}\\\dfrac{1}{3}x-\dfrac{1}{4}=\dfrac{-11}{15}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}\dfrac{1}{3}x=\dfrac{59}{60}\\\dfrac{1}{3}x=\dfrac{-29}{60}\end{matrix}\right.\)
=> \(\left[{}\begin{matrix}x=\dfrac{59}{20}\\x=\dfrac{-29}{20}\end{matrix}\right.\)
Chúc bạn học tốt !
a: =>6/x=x/24
=>x^2=144
=>x=12 hoặc x=-12
b: =>x(1-7/12+3/8)=5/24
=>x*19/24=5/24
=>x=5/24:19/24=5/19
c: =>(x-1/3)^2=1+3/4+1/2=9/4
=>x-1/3=3/2 hoặc x-1/3=-3/2
=>x=11/6 hoặc x=-7/6
d: =>(x-3)^2=16
=>x-3=4 hoặc x-3=-4
=>x=-1 hoặc x=7
e: =>9/x=-1/3
=>x=-27
f: =>x-1/2=0 hoặc -x/2-3=0
=>x=1/2 hoặc x=-6
\(x+\left|\dfrac{1}{2}-\dfrac{1}{3}\right|=\left|\dfrac{-2}{3}-\dfrac{1}{4}\right|\)
\(x+\left|\dfrac{1}{6}\right|=\left|\dfrac{-11}{12}\right|\)
\(x+\dfrac{1}{6}=\dfrac{11}{12}\)
\(x=\dfrac{11}{12}-\dfrac{1}{6}\)
\(x=\dfrac{3}{4}\)
Vậy ...
\(x:\dfrac{1}{2}+x:\dfrac{1}{4}+x:\dfrac{1}{8}+...+x:\dfrac{1}{512}=511\\ 2x+4x+8x+..+512x=511\\ x\left(2+4+8+...+512\right)=511\\ x\left(2^1+2^2+2^3+...+2^9\right)=511\\ \)
Gọi \(S=2^1+2^2+2^3+...+2^9\)
\(2S=2^2+2^3+2^4+...+2^{10}\\ 2S-S=\left(2^2+2^3+2^4+...+2^{10}\right)-\left(2^1+2^2+2^3+...+2^9\right)\\ S=2^{10}-2\)
\(x\left(2^{10}-2\right)=511\\ 2x\left(2^9-1\right)=511\\ 2x\left(512-1\right)=511\\ 2x\cdot511=511\\ 2x=1\\ x=\dfrac{1}{2}\)
Vậy \(x=\dfrac{1}{2}\)