ABCD hình thang cân (AB song song CD), AC giap BD tại O. Gọi M, N, P, Q, K trung điểm OA, OB, OC, OD và BC. Biết tam giác MKQ đều.
a) Chứng minh BM vuông góc với AC
b) Tam giác AOB là tam giác gì?
c) MNPQ hình gì?
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
2 đường chéo AC; BD cắt nhau tại O. Do hình thang ABCD cân (AB//CD)
=> OA=OB; OC=OD (Tự chứng minh)
Mà ^AOB=600 => ^COD=600 (Đối đỉnh) => Tam giác AOB và tam giác COD đều.
Xét tam giác AOB đều: H là trung điểm OA => BH vuông góc OA
=> Tam giác BHC vuông tại H; K là trung điểm của BC => HK=BK=CK=BC/2 (1)
Tương tự: Tam giác CIB vuông tại I, K là trung điểm BC => IK=CK=BK=BC/2 (2)
Xét tam giác AOD: H là trung điểm OA; I là trung điểm OD => IH là đường trung bình tam giác AOD.
=> IH=AD/2. Mà hình thang ABCD cân (AB//CD) => AD=BC => IH=BC/2 (3)
Từ (1); (2) và (3) => HK=IK=IH => Tam giác HIK là tam giác đều (đpcm).