K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 10 2017

§3. Một số phương trình lượng giác thường gặp

14 tháng 8 2017

\(4cosx-2cos2x-cos4x=1\)

\(\Leftrightarrow4cosx-2cos2x-\left(2cos^22x-1\right)=1\)

\(\Leftrightarrow4cosx-2cos2x-2cos^22x=0\)

\(\Leftrightarrow4cosx-2cos2x\cdot\left(1+cos2x\right)=0\)

\(\Leftrightarrow4cosx-2cos2x\cdot2cos^2x=0\)

\(\Leftrightarrow2cosx\cdot\left(2-2cos2x\cdot cosx\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}cosx=0\rightarrow x=\dfrac{\pi}{2}+k\pi\left(k\in Z\right)\\2-2cos2x\cdot cosx=0\end{matrix}\right.\)

\(\Leftrightarrow2cos2x\cdot cosx=2\)

\(\Leftrightarrow cos2x\cdot cosx=1\)

\(\Leftrightarrow\left(2cos^2x-1\right)\cdot cosx-1=0\)

\(\Leftrightarrow2cos^3x-cosx-1=0\)

\(\Leftrightarrow cosx=1\)

\(\Leftrightarrow x=k2\pi\) \(\left(k\in Z\right)\)

14 tháng 8 2017

Giúp mik bài mik vừa đăng

1 tháng 1 2017

Đáp án B

16 tháng 8 2021

a) <=> 4sinxcosx -(2cos2x-1)=7sinx+2cosx-4

<=> 2cos2x+(2-4sinx)cosx+7sinx-5=0

- sinx=1 => 2cos2x-2cosx+2=0 

pt trên vn

16 tháng 8 2021

b) <=> 2sinxcosx-1+2sin2x+3sinx-cosx-1=0

<=> cos(2sinx-1)+2sin2x+3sinx-2=0

<=> cosx(2sinx-1)+(2sinx-1)(sinx+2)=0

<=> (2sinx-1)(cosx+sinx+2)=0

<=> sinx=1/2 hoặc cosx+sinx=-2(vn)

<=> x= \(\frac{\pi}{6}+k2\pi\) hoặc \(x=\frac{5\pi}{6}+k2\pi\left(k\in Z\right)\)

6 tháng 11 2019

Phương pháp:

Biến đổi về phương trình bậc 2 đối với cos2x. Sử dụng công thức nhân đôi:  cos 2 x = cos 2 x − sin 2 x

Cách giải:

Ta có:

2 cos 2 x + 5 sin 4 x − cos 4 x + 3 = 0 ⇔ 2 cos 2 x + 5 sin 2 x − cos 2 x sin 2 x + cos 2 x + 3 = 0

Chọn: A

29 tháng 8 2019

Đáp án B.

PT ⇔ 2 cos 2 x + 5 sin 2 x - cos 2 x sin 2 x + cos 2 x + 3 = - 2 cos 2 x + 5 cos 2 x + 3 = 0  

⇔ 2 cos 2 2 x + 5 cos 2 x - 3 = 0 ⇔ [ cos 2 x = - 3 ( ! ) cos 2 x = 1 2 ⇔ 2 x = ± π 3 + k 2 π  

⇔ x = ± π 3 + k π ∈ 0 ; 2 π ⇔ x ∈ π 6 ; 5 π 6 ; 7 π 6 ; 11 π 6 ⇒ S = 4 π .

9 tháng 6 2018

13 tháng 10 2018

Chọn B

13 tháng 6 2018

Chọn B

28 tháng 12 2019