Chứng minh rằng ( n thuộc Z)
a, (n+1)+2n(n+1) chia hết cho 6
b, (2n-1)3-(2n-1) chia hết cho 8
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)\(n\left(2n-3\right)-2n\left(n+1\right)=n\left(2n-3\right)-n\left(2n+2\right)=n\left(2n-3-2n-2\right)\)
\(=n\left(-5\right)=-5n\) chia hết cho 5 với n thuộc Z
b)\(\left(n-1\right)\left(n+4\right)-\left(n-4\right)\left(n+1\right)=\left(n^2+3n-4\right)-\left(n^2-3n-4\right)\)
\(=n^2+3n-4-n^2+3n+4=6n\) chia hết cho 6 với n thuộc Z
a) Ta có: m^3-m = m(m^2-1^2) = m.(m+1)(m-1) là tích của 3 số nguyên liên tiếp
=> m(m+1)(m-1) chia hết cho 3 và 2
Mà (3,2) = 1
=> m(m+1)(m-1) chia hết cho 6
=> m^3 - m chia hết cho 6 V m thuộc Z
b) Ta có: (2n-1)-2n+1 = 2n-1-2n+1 = 0-1+1 = 0 luôn chia hết cho 8
=> (2n-1)-2n+1 luôn chia hết cho 8 V n thuộc Z
Tick nha pham thuy trang
a, m3 - m = m( m2 - 12) = m(m - 1 ) ( m + 1) => 3 số nguyên liên tiếp : hết cho 6
mk chỉ biết có thế thôi
\(b.\)\(\left(2n-1\right)^3-\left(2n-1\right)=\left(2n-1\right)\left[\left(2n-1\right)^2-1\right]\)
\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1^2\right]=\left(2n-1\right)\left(2n-1-1\right)\left(2n-1+1\right)\)
\(\text{Áp dụng hằng đẳng thức }\)\(a^2-b^2=\left(a-b\right)\left(a+b\right)\)
\(=\left(2n-1\right)\left(2n-2\right).2n=\left(2n-1\right).2\left(n-1\right).2n\)
\(=\left(2n-1\right).4.n\left(n-1\right)\)
\(n\left(n-1\right)⋮2\)(vì là tích 2 số liên tiếp)
\(\Rightarrow\left(2n-1\right).4.n\left(n-1\right)⋮\left(4.2\right)=8\)
\(\left(2n-1\right).4.n\left(n-1\right)⋮8\RightarrowĐPCM\)
a) ( 2n+3 )2 - 9 = (2n+3 - 3 )(2n+3+3) = 2n.(2n+6)=4n(n+3) \(⋮\)4
b) n2 (n+1) + 2n2 + 2n = n2 ( n + 1 ) + 2n ( n + 1 ) = (n + 1 ) ( n2 + 2n ) = n ( n + 1 ) ( n + 2 ) \(⋮\)6
Chứng minh rằng (n thuộc Z)
a) n2(n + 1) + 2n(n + 1)
= (n + 1)(n2 + 2n)
= n(n + 1)(n + 2) \(⋮\) 6 (với mọi \(n\in Z\))
Vậy n2(n + 1) + 2n(n + 1) chia hết cho 6 (với mọi \(n\in Z\))
b) (2n - 1)3 - (2n - 1)
= (2n - 1)[(2n - 1)2 - 12]
= (2n - 1)(2n - 1 + 1)(2n - 1 - 1)
= 2n(2n - 1)(2n - 2)
= 4n(2n - 1)(n - 1) \(⋮4\left(1\right)\)
Mà (2n - 1)(n - 1) = (n + n - 1)(n - 1) \(⋮2\left(2\right)\)
Từ (1) và (2) suy ra: (2n - 1)3 - (2n - 1) chia hết cho 8 (với mọi \(n\in Z\))
Sai rồi ở câu a.