K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

11 tháng 7 2017

Ta có: \(Q=\dfrac{x^2+x+1}{x^2+2x+1}\)

\(\Rightarrow\dfrac{1}{Q}=\dfrac{x^2+2x+1}{x^2+x+1}\)

Để Q min thì \(\dfrac{1}{Q}\) max

\(\dfrac{1}{Q}=\dfrac{x^2+2x+1}{x^2+x+1}=1+\dfrac{x}{x^2+x+1}\)

\(=1+\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{-x^2+2x+1}{x^2+x+1}=\dfrac{4}{3}-\dfrac{1}{3}.\dfrac{\left(-x-1\right)^2}{x^2+x+1}\le\dfrac{4}{3}\)

( Vì mẫu > 0 và tử \(\ge0\) )

\(\Rightarrow\dfrac{1}{Q}\) đạt GTNN là \(\dfrac{4}{3}\) khi x =1

Vậy Q đạt GTNN là \(\dfrac{3}{4}\) khi x = 1

11 tháng 7 2017

Ta có: \(\dfrac{a+b}{a}=\dfrac{a}{b}\)

\(\Leftrightarrow\dfrac{a}{b}-1-\dfrac{1}{\dfrac{a}{b}}=0\)

\(\Leftrightarrow\left(\dfrac{a}{b}\right)^2-\dfrac{a}{b}-1=0\)

\(\Leftrightarrow\left(\dfrac{a}{b}-\dfrac{1}{2}\right)^2=\dfrac{5}{4}\)

\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{a}{b}=\dfrac{\sqrt{5}+1}{2}\\\dfrac{a}{b}=\dfrac{-\sqrt{5}+1}{2}\end{matrix}\right.\)

Thế \(\dfrac{a}{b}\) vào PT \(x^2-x-1\)

\(\Rightarrowđpcm\)

NV
21 tháng 1 2024

\(P=\dfrac{1}{\left(x+1\right)^2+5}\le\dfrac{1}{5}\)

\(P_{max}=\dfrac{1}{5}\) khi \(x+1=0\Rightarrow x=-1\)

\(Q=\dfrac{x^2+x+1}{x^2+2x+1}=\dfrac{4x^2+4x+4}{4\left(x+1\right)^2}=\dfrac{3\left(x^2+2x+1\right)+x^2-2x+1}{4\left(x+1\right)^2}=\dfrac{3}{4}+\dfrac{\left(x-1\right)^2}{4\left(x+1\right)^2}\)

\(Q_{min}=\dfrac{3}{4}\) khi \(x-1=0\Rightarrow x=1\)

1: \(x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5>=5\forall x\)

=>\(P=\dfrac{1}{x^2+2x+6}< =\dfrac{1}{5}\forall x\)

Dấu '=' xảy ra khi x+1=0

=>x=-1

 

15 tháng 1 2017

Ta có: \(Q=\frac{x^2+x+1}{x^2+2x+1}\)

\(\Rightarrow\frac{1}{Q}=\frac{x^2+2x+1}{x^2+x+1}\)

Để Q min thì \(\frac{1}{Q}\)max

\(\frac{1}{Q}=\frac{x^2+2x+1}{x^2+x+1}=1+\frac{x}{x^2+x+1}\)

\(=1+\frac{1}{3}+\frac{1}{3}.\frac{-x^2+2x+1}{x^2+x+1}=\frac{4}{3}-\frac{1}{3}.\frac{-\left(x-1\right)^2}{x^2+x+1}\le\frac{4}{3}\)

(Vì mẫu > 0 và tử \(\ge0\))

\(\Rightarrow\frac{1}{Q}\)đạt GTLN là \(\frac{4}{3}\)khi x = 1

Vậy Q đạt GTNN là \(\frac{3}{4}\)khi x = 1

15 tháng 1 2017

Những sai sót do đánh máy bạn tự sửa hộ m nhé

22 tháng 6 2021

a) đk x khác 0;2

P =  \(\dfrac{1}{x\left(x-2\right)}.\left(\dfrac{x^2+4}{x}-4\right)+1\)

\(\dfrac{1}{x\left(x-2\right)}.\dfrac{x^2-4x+4}{x}+1\)

\(\dfrac{1}{x\left(x-2\right)}.\dfrac{\left(x-2\right)^2}{x}+1\)

\(\dfrac{x-2}{x^2}+1\)

\(\dfrac{x^2+x-2}{x^2}\)

b) Để \(\left|2+x\right|=1\)

<=> \(\left[{}\begin{matrix}2+x=1< =>x=-1\left(tm\right)\\2+x=-1< =>x=-3\left(tm\right)\end{matrix}\right.\)

TH1: x = -1

Thay x = -1 vào P, ta có:

\(P=\dfrac{\left(-1\right)^2-1-2}{\left(-1\right)^2}=-2\)

TH2: x = -3

Thay x = -3 vào P, ta có:

\(P=\dfrac{\left(-3\right)^2-3-2}{\left(-3\right)^2}=\dfrac{4}{9}\)

c) P = \(1+\dfrac{x-2}{x^2}\)

Xét \(\dfrac{x^2}{x-2}=\dfrac{\left(x-2\right)^2+4\left(x-2\right)+4}{x-2}\)

\(\left(x-2\right)+\dfrac{4}{x-2}+4\)

Áp dụng bdt co-si, ta có:

\(\left(x-2\right)+\dfrac{4}{x-2}\ge2\sqrt{\left(x-2\right)\dfrac{4}{x-2}}=4\)

<=> \(\dfrac{x^2}{x-2}\ge4+4=8\)

<=> \(\dfrac{x-2}{x^2}\le\dfrac{1}{8}\)

<=> A \(\le\dfrac{9}{8}\)

Dấu "=" <=> x = 4

4 tháng 11 2023

\(A=0,6+\left|\dfrac{1}{2}-x\right|\\ Vì:\left|\dfrac{1}{2}-x\right|\ge\forall0x\in R\\ Nên:A=0,6+\left|\dfrac{1}{2}-x\right|\ge0,6\forall x\in R\\ Vậy:min_A=0,6\Leftrightarrow\left(\dfrac{1}{2}-x\right)=0\Leftrightarrow x=\dfrac{1}{2}\)

4 tháng 11 2023

\(B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\\ Vì:\left|2x+\dfrac{2}{3}\right|\ge0\forall x\in R\\ Nên:B=\dfrac{2}{3}-\left|2x+\dfrac{2}{3}\right|\le\dfrac{2}{3}\forall x\in R\\ Vậy:max_B=\dfrac{2}{3}\Leftrightarrow\left|2x+\dfrac{2}{3}\right|=0\Leftrightarrow x=-\dfrac{1}{3}\)

AH
Akai Haruma
Giáo viên
22 tháng 2 2021

Lời giải:

$x^2+2x+6=(x^2+2x+1)+5=(x+1)^2+5\geq 5$ với mọi $x\in\mathbb{R}$

Do đó: $P=\frac{1}{x^2+2x+6}\leq \frac{1}{5}$

Vậy $P_{\max}=\frac{1}{5}$. Giá trị đạt tại $x=-1$

NV
22 tháng 2 2021

\(P=\dfrac{1}{\left(x+1\right)^2+5}\le\dfrac{1}{5}\)

\(P_{max}\) khi \(x+1=0\Leftrightarrow x=-1\)

21 tháng 6 2021

 \(C=\left(\dfrac{2x^2+1}{x^3-1}-\dfrac{1}{x-1}\right)\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)

ĐKXĐ: \(x\ne1\)

\(C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1}{x-1}\right)]\div\left(1-\dfrac{x^2-2}{x^2+x+1}\right)\)

\(\Leftrightarrow C=[\left(\dfrac{2x^2+1}{(x-1)\left(x^2+x+1\right)}-\dfrac{1\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}\right)]\div[\dfrac{(x-1)\left(x^2+x+1\right)}{(x-1)\left(x^2+x+1\right)}-\dfrac{(x^2-2)(x-1)}{(x^2+x+1)\left(x-1\right)}]\)

\(\Rightarrow C=\left[2x^2+1-1\left(x^2+x+1\right)\right]\div\left[\left(x-1\right)\left(x^2+x+1\right)-\left(x-1\right)\left(x^2-2\right)\right]\)

\(\Rightarrow C=(2x^2+1-x^2-x-1)\div\left[\left(x-1\right)\left(x^2+x+1-x^2+2\right)\right]\)

\(\Rightarrow C=\left(x^2-x\right)\div\left[\left(x-1\right)\left(x+3\right)\right]\)

 

 

 

20 tháng 11 2018

\(P=\frac{1}{x^2+2x+6}\)

\(P=\frac{1}{\left(x+1\right)^2+5}\ge\frac{1}{5}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy Pmin = 1/5 khi và chỉ khi x = -1

20 tháng 11 2018

ta có : \(x^2+2x+6=x^2+2x+1+5.\)

\(\Rightarrow\left(x+1\right)^2+5\)

ta có : \(\left(x+1\right)^2\ge0\)

\(\Rightarrow\left(x+1\right)^2+5\ge5\)

\(\Rightarrow\frac{1}{x^2+2x+6}\ge\frac{1}{5}\)

Vậy GTLN(P) = 1/5 khi x = -1 

AH
Akai Haruma
Giáo viên
26 tháng 11 2018

Lời giải:
\(A=\frac{x^2+x+1}{x^2+2x+1}=\frac{x^2+2x+1-x}{x^2+2x+1}=1-\frac{x}{x^2+2x+1}=1-\frac{x}{(x+1)^2}\)

Ta thấy \((x+1)^2-4x=x^2-2x+1=(x-1)^2\geq 0\)

\(\Rightarrow (x+1)^2\geq 4x\Rightarrow \frac{x}{(x+1)^2}\leq \frac{x}{4x}=\frac{1}{4}\)

\(\Rightarrow A=1-\frac{x}{(x+1)^2}\geq 1-\frac{1}{4}=\frac{3}{4}\)

Vậy \(A_{\min}=\frac{3}{4}\Leftrightarrow (x-1)^2=0\Leftrightarrow x=1\), tức là A đạt min khi $x=1$

22 tháng 2 2017

k biet lam

26 tháng 3 2020

\(\text{Ta có:}x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5\ge0+5=5\)

\(P=\frac{1}{x^2+2x+6}\ge\frac{1}{5}\Rightarrow\text{GTLN của }P\text{ là:}\frac{1}{5}\text{ khi: }x=\frac{1}{5}\)