K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

20 tháng 11 2018

\(P=\frac{1}{x^2+2x+6}\)

\(P=\frac{1}{\left(x+1\right)^2+5}\ge\frac{1}{5}\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow x+1=0\Leftrightarrow x=-1\)

Vậy Pmin = 1/5 khi và chỉ khi x = -1

20 tháng 11 2018

ta có : \(x^2+2x+6=x^2+2x+1+5.\)

\(\Rightarrow\left(x+1\right)^2+5\)

ta có : \(\left(x+1\right)^2\ge0\)

\(\Rightarrow\left(x+1\right)^2+5\ge5\)

\(\Rightarrow\frac{1}{x^2+2x+6}\ge\frac{1}{5}\)

Vậy GTLN(P) = 1/5 khi x = -1 

NV
20 tháng 11 2018

\(P=\dfrac{1}{x^2+2x+1+5}=\dfrac{1}{\left(x+1\right)^2+5}\)

Để P lớn nhất thì \(\left(x+1\right)^2+5\) nhỏ nhất, mà \(\left(x+1\right)^2+5\ge5\) \(\forall x\)

\(\Rightarrow P_{max}=\dfrac{1}{5}\) khi \(\left(x+1\right)^2=0\Rightarrow x=-1\)

AH
Akai Haruma
Giáo viên
22 tháng 2 2021

Lời giải:

$x^2+2x+6=(x^2+2x+1)+5=(x+1)^2+5\geq 5$ với mọi $x\in\mathbb{R}$

Do đó: $P=\frac{1}{x^2+2x+6}\leq \frac{1}{5}$

Vậy $P_{\max}=\frac{1}{5}$. Giá trị đạt tại $x=-1$

NV
22 tháng 2 2021

\(P=\dfrac{1}{\left(x+1\right)^2+5}\le\dfrac{1}{5}\)

\(P_{max}\) khi \(x+1=0\Leftrightarrow x=-1\)

22 tháng 2 2017

k biet lam

26 tháng 3 2020

\(\text{Ta có:}x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5\ge0+5=5\)

\(P=\frac{1}{x^2+2x+6}\ge\frac{1}{5}\Rightarrow\text{GTLN của }P\text{ là:}\frac{1}{5}\text{ khi: }x=\frac{1}{5}\)

a) Ta có \(x^2+2x+6=\left(x+1\right)^2+5\ge5\)

\(\Rightarrow P\le\frac{1}{5}\)

Dấu "=" xảy ra khi x=-1

\(Q=1-\frac{1}{x+1}+\frac{1}{\left(x+1\right)^2}\)

Đặt \(a=\frac{1}{x+1}\)

\(\Rightarrow Q=1-a+a^2=\left(a-\frac{1}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu "=" xảy ra khi \(a=\frac{1}{2}\Rightarrow x=1\)

11 tháng 6 2015

\(x^2+2.x.1+1+5=\left(x+1\right)^2+5\ge5\) ( VÌ \(\left(x+1\right)^2\ge0\))

=> \(\frac{1}{x^2+2x+6}\ge\frac{1}{5}\)

Vậy MaxP = 1/5 khi x = -1

câu b tương tự

29 tháng 6 2017

Biến đổi các biểu thức hữu tỉ. Giá trị của phân thức

12 tháng 12 2017

điều kiện của x để gtrị của biểu thức đc xác định

=>\(2x+10\ne0;x\ne0:2x\left(x+5\right)\ne0\)

\(2x+5\ne0;x\ne0\)

=>\(x\ne-5;x\ne0\)

vậy đkxđ là \(x\ne-5;x\ne0\)

rút gon giống với bạn nguyen thuy hoa đến \(\dfrac{x-1}{2}\)

b,để bt =1=>\(\dfrac{x-1}{2}=1\)

=>x-1=2

=>x=3 thỏa mãn đkxđ

c,d giống như trên

3 tháng 1 2019

a) Phân thức B xác định \(\Leftrightarrow\hept{\begin{cases}2x-2\ne0\\x^2-1\ne0\\2x+2\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}x\ne1\\x\ne\left\{\pm1\right\}\\x\ne-1\end{cases}\Leftrightarrow}x\ne\left\{\pm1\right\}}\)

b) \(B=\left(\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right)\cdot\frac{4x^2-4}{5}\)

\(B=\left[\frac{\left(x+1\right)^2}{2\left(x-1\right)\left(x+1\right)}+\frac{3\cdot2}{2\left(x-1\right)\left(x+1\right)}-\frac{\left(x+3\right)\left(x-1\right)}{2\left(x-1\right)\left(x+1\right)}\right]\cdot\frac{\left(2x\right)^2-2^2}{5}\)

\(B=\frac{x^2+2x+1+6-x^2-2x+3}{2\left(x-1\right)\left(x+1\right)}\cdot\frac{\left(2x-2\right)\left(2x+2\right)}{5}\)

\(B=\frac{10\cdot2\left(x-1\right)\cdot2\left(x+1\right)}{2\left(x-1\right)\left(x+1\right)\cdot5}\)

\(B=\frac{40\left(x-1\right)\left(x+1\right)}{10\left(x-1\right)\left(x+1\right)}\)

\(B=4\)

Vậy với mọi giá trị của x thì B luôn bằng 4

Vậy giá trị của B không phụ thuộc vào biến ( đpcm )

3 tháng 1 2019

\(Giải:\)

\(ĐKXĐ:x\ne\pm1\)
\(B=\left[\frac{x+1}{2x-2}+\frac{3}{x^2-1}-\frac{x+3}{2x+2}\right]=\left[\frac{x+1}{2x-2}+\frac{12}{4x^2-4}-\frac{x+3}{2x+2}\right]\)

\(=\left[\frac{x+1}{2x-2}+\frac{12}{\left(2x+2\right)\left(2x-2\right)}-\frac{x+3}{2x+2}\right]\)

\(=\left[\frac{\left(x+1\right)\left(2x+2\right)}{\left(2x+2\right)\left(2x-2\right)}+\frac{12}{\left(2x+2\right)\left(2x-2\right)}-\frac{\left(x+3\right)\left(2x-2\right)}{\left(2x-2\right)\left(2x+2\right)}\right]\)

\(=\frac{2x^2+4x+14-2x^2+2x-6x+6}{\left(2x-2\right)\left(2x+2\right)}\)

\(=\frac{6}{\left(2x-2\right)\left(2x+2\right)}\)