Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có: \(Q=\dfrac{x^2+x+1}{x^2+2x+1}\)
\(\Rightarrow\dfrac{1}{Q}=\dfrac{x^2+2x+1}{x^2+x+1}\)
Để Q min thì \(\dfrac{1}{Q}\) max
\(\dfrac{1}{Q}=\dfrac{x^2+2x+1}{x^2+x+1}=1+\dfrac{x}{x^2+x+1}\)
\(=1+\dfrac{1}{3}+\dfrac{1}{3}.\dfrac{-x^2+2x+1}{x^2+x+1}=\dfrac{4}{3}-\dfrac{1}{3}.\dfrac{\left(-x-1\right)^2}{x^2+x+1}\le\dfrac{4}{3}\)
( Vì mẫu > 0 và tử \(\ge0\) )
\(\Rightarrow\dfrac{1}{Q}\) đạt GTNN là \(\dfrac{4}{3}\) khi x =1
Vậy Q đạt GTNN là \(\dfrac{3}{4}\) khi x = 1
Ta có: \(\dfrac{a+b}{a}=\dfrac{a}{b}\)
\(\Leftrightarrow\dfrac{a}{b}-1-\dfrac{1}{\dfrac{a}{b}}=0\)
\(\Leftrightarrow\left(\dfrac{a}{b}\right)^2-\dfrac{a}{b}-1=0\)
\(\Leftrightarrow\left(\dfrac{a}{b}-\dfrac{1}{2}\right)^2=\dfrac{5}{4}\)
\(\Leftrightarrow\left[{}\begin{matrix}\dfrac{a}{b}=\dfrac{\sqrt{5}+1}{2}\\\dfrac{a}{b}=\dfrac{-\sqrt{5}+1}{2}\end{matrix}\right.\)
Thế \(\dfrac{a}{b}\) vào PT \(x^2-x-1\)
\(\Rightarrowđpcm\)
\(P=\dfrac{1}{\left(x+1\right)^2+5}\le\dfrac{1}{5}\)
\(P_{max}=\dfrac{1}{5}\) khi \(x+1=0\Rightarrow x=-1\)
\(Q=\dfrac{x^2+x+1}{x^2+2x+1}=\dfrac{4x^2+4x+4}{4\left(x+1\right)^2}=\dfrac{3\left(x^2+2x+1\right)+x^2-2x+1}{4\left(x+1\right)^2}=\dfrac{3}{4}+\dfrac{\left(x-1\right)^2}{4\left(x+1\right)^2}\)
\(Q_{min}=\dfrac{3}{4}\) khi \(x-1=0\Rightarrow x=1\)
1: \(x^2+2x+6=x^2+2x+1+5=\left(x+1\right)^2+5>=5\forall x\)
=>\(P=\dfrac{1}{x^2+2x+6}< =\dfrac{1}{5}\forall x\)
Dấu '=' xảy ra khi x+1=0
=>x=-1
a)
\(A=\dfrac{2x^2-16x+41}{x^2-8x+22}=\dfrac{2\left(x^2-8x+22\right)-3}{x^2-8x+22}\)
\(A-2=-\dfrac{3}{x^2-8x+22}=-\dfrac{3}{\left(x-4\right)^2+6}\ge-\dfrac{3}{6}=-\dfrac{1}{2}\)
\(A\ge\dfrac{3}{2}\) khi x =4
Ta có: \(Q=\frac{x^2+x+1}{x^2+2x+1}\)
\(\Rightarrow\frac{1}{Q}=\frac{x^2+2x+1}{x^2+x+1}\)
Để Q min thì \(\frac{1}{Q}\)max
\(\frac{1}{Q}=\frac{x^2+2x+1}{x^2+x+1}=1+\frac{x}{x^2+x+1}\)
\(=1+\frac{1}{3}+\frac{1}{3}.\frac{-x^2+2x+1}{x^2+x+1}=\frac{4}{3}-\frac{1}{3}.\frac{-\left(x-1\right)^2}{x^2+x+1}\le\frac{4}{3}\)
(Vì mẫu > 0 và tử \(\ge0\))
\(\Rightarrow\frac{1}{Q}\)đạt GTLN là \(\frac{4}{3}\)khi x = 1
Vậy Q đạt GTNN là \(\frac{3}{4}\)khi x = 1
a/ \(M=\dfrac{x^2-x+1}{x^2+2x+1}=\dfrac{1}{4}+\dfrac{3x^2-6x+3}{x^2+2x+1}=\dfrac{1}{4}+\dfrac{3\left(x-1\right)^2}{x^2+2x+1}\ge\dfrac{1}{4}\)
b/ \(N=\dfrac{3x^2+4x}{x^2+1}=4-\dfrac{x^2-4x+4}{x^2+1}=4-\dfrac{\left(x-2\right)^2}{x^2+1}\le4\)
Ta có : \(P=2x^2-8x+1=2\left(x^2-4x\right)+1=2\left(x^2-4x+4-4\right)+1=2\left(x-2\right)^2-7\)
Vì \(2\left(x-2\right)^2\ge0\forall x\)
Nên : \(P=2\left(x-2\right)^2-7\ge-7\forall x\in R\)
Vậy \(P_{min}=-7\) khi x = 2
Lời giải:
\(A=\frac{x^2+x+1}{x^2+2x+1}=\frac{x^2+2x+1-x}{x^2+2x+1}=1-\frac{x}{x^2+2x+1}=1-\frac{x}{(x+1)^2}\)
Ta thấy \((x+1)^2-4x=x^2-2x+1=(x-1)^2\geq 0\)
\(\Rightarrow (x+1)^2\geq 4x\Rightarrow \frac{x}{(x+1)^2}\leq \frac{x}{4x}=\frac{1}{4}\)
\(\Rightarrow A=1-\frac{x}{(x+1)^2}\geq 1-\frac{1}{4}=\frac{3}{4}\)
Vậy \(A_{\min}=\frac{3}{4}\Leftrightarrow (x-1)^2=0\Leftrightarrow x=1\), tức là A đạt min khi $x=1$