Cho 51 số hữu tỉ biết rằng tích của cả 51 số đó và tích của 4 số bất kỳ trong chúng đều là số dương.CMR 51 số đó đều là số dương
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Giả sử 51 số đó đều âm và tích 4 số đó âm .
=> Mâu thuẫn với đề bài
=> Tồn tại ít nhất 1 số dương
Lấy số dương đó ra , còn lại 50 số , chia thành 12 nhóm.
có 4 số bất kì có tổng đều âm
Vậy 51 số đó đều dương.
giả sử 2015 số đã cho là:
a1 bé hơn hoặc bằng a2bé hơn hoặc bằng.......bé hơn hoặc bằng a2014bé hơn hoặc bằng a2015
Vì tích 3 số bất kỳ luôn luôn dương
nên trong dãy số có nhiều nhất 2 số âm
\(\vec{ }\)
a1;a2 <0
ta có: a1.a2014.a2015 <0
mà đề cho:a1.a2014.a2015>0
\(\vec{ }\)
a1;a2 không thể âm
Do vậy 2015 số đã cho phải là số dương
Gọi các số cần tìm theo thứ tự từ bé -> lớn là a1; a2; a3; ...; a100
- Ta có a1 . a2 . a100 < 0
=> Cả 3 số cùng âm
hoặc a1 âm và a2; a100 dương ( không thể theo thứ tự khác vì từ đầu ta đã nói là từ bé -> lớn )
+ a2 là số dương => a3; a4; ....; a100 đều là số dương ( vì đã từ bé => lớn ) => mâu thuẫn vì tích 3 số bất kì đều < 0
=> Trường hợp **** ( a100 là số âm )
=> 100 số đề là số âm.
- Tích của 2 số âm là 1 số dương mà có 50 cặp
=> tích 100 số trên là số dương
- Gọi các số đó là : \(x_1,x_2.....x_{2021}\)
Ta có : \(\left\{{}\begin{matrix}x_1.x_2.x_3>0\\......\\\end{matrix}\right.\)
- Để \(x_1.x_2.x_3>0\) thì \(\left[{}\begin{matrix}\left\{{}\begin{matrix}x1>0\\x2< 0\\x3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x1< 0\\x2>0\\x3< 0\end{matrix}\right.\\\left\{{}\begin{matrix}x1>0\\x2< 0\\x3< 0\end{matrix}\right.\end{matrix}\right.\) hoặc \(\left\{{}\begin{matrix}x1>0\\x2>0\\x3>0\end{matrix}\right.\)
CMTT => Trường hợp thỏa mãn là : \(\left\{{}\begin{matrix}x1>0\\....\\x2021>0\end{matrix}\right.\)
Vậy ....
Phản chứng: gọi các số hữu tỉ là \(a_1;a_2;a_3;a_4...\)
Do tích các số đều dương nên tất cả chúng đều khác 0
Nếu tồn tại 1 số trong đó là số âm, giả sử \(a_1< 0\)
Do \(a_1.\left(a_2.a_3\right)>0\Rightarrow a_2a_3< 0\) (1)
\(\left(a_2a_3\right)a_4>0\) mà \(a_2a_3< 0\Rightarrow a_4< 0\)
\(\Rightarrow a_1a_4>0\)
\(a_1a_2a_4>0\) mà \(a_1a_4>0\Rightarrow a_2>0\) (2)
\(a_1a_3a_4>0\) mà \(a_1a_4>0\Rightarrow a_3>0\) (3)
(2); (3) \(\Rightarrow a_2a_3>0\) mâu thuẫn với (1)
Vậy điều giả sử là sai hay 2021 số đó đều dương
Lời giải:
Xét các số \(a_1,a_2,....,a_{51}\)
Ta có \(a_1a_2....a_{51}=(a_1a_2a_3)(a_4a_5....a_{51})>0\)
Vì cứ tích $4$ số bất kỳ đều dương nên tích của \(48\) số từ \(a_4\rightarrow a_{51}\) dương, do đó \(a_1a_2a_3>0\)
Mà theo đk đề bài thì \(a_1a_2a_3a_j>0 \) \((j=\overline{4;51})\) nên \(a_4,a_5,...,a_{51}>0\)
Khi đó \(a_4a_5a_6>0\) mà \(a_4a_5a_6a_1,a_4a_5a_6a_2,a_4a_5a_6a_1>0\) nên \(a_1,a_2,a_3>0\)
Ta có đpcm.
Cảm ơn.